1,356 research outputs found

    Molecular dynamics studies of the bonding properties of amorphous silicon nitride coatings on crystalline silicon

    Get PDF
    In this paper we present molecular dynamics simulations of silicon nitride, both in bulk and as an interface to crystalline silicon. We investigate, in particular, the bonding structure of the silicon nitride and analyze the simulations to search for de- fective geometries which have been identified as potential charge carrier traps when silicon nitride forms an interface with silicon semiconductors. The simulations reveal how the bonding patterns in silicon nitride are dependent upon the stoichiometry of the system. Furthermore we demonstrate how having an “interphase”, where the nitrogen content in silicon gradually reduces towards pure silicon across a boundary region, as opposed to an interface where there is an abrupt drop in nitrogen con- centration at the boundary, can result in significantly different numbers of certain important carrier tra

    Structural and electronic properties of silver/silicon interfaces and implications for solar cell performance

    Get PDF
    We present the results of an experimental and atomistic modelling investigation of the Sili- con/Silver (Si/Ag) interfaces found in industrial solar cells. We use small ab initio calculations to parameterize a new interatomic potential for the Si/Ag interaction. This interatomic potential is then validated against larger ab initio calculations as well as the results of previous experimental and theoretical studies of Si/Ag systems. The interatomic potential allows us to perform a large- scale search of the conformational space of Si/Ag interfaces identified from transmission electron microscopy (TEM) studies. The most favourable geometries thus identified are then used as the input for more accurate ab initio calculations. We demonstrate that the two interfaces which we identify experimentally have significantly different geometric and electronic structures. We also demonstrate how these different structures result in significantly different Schottky barriers at the interfaces

    Potentials to differentiate milk composition by different feeding strategies

    Get PDF
    To investigate the effect of the dietary intake of the cow on milk composition, bulk-tank milk was collected on 5 occasions from conventional (n = 15) and organic (n = 10) farms in Denmark and on 4 occasions from low-input nonorganic farms in the United Kingdom, along with management and production parameters. Production of milk based on feeding a high intake of cereals, pasture, and grass silage resulted in milk with a high concentration of α-linolenic acid (9.4 ± 0.2 mg/ kg of fatty acids), polyunsaturated fatty acids (3.66 ± 0.07 mg/kg of fatty acids), and natural stereoisomer of α-tocopherol (RRR-α-tocopherol, 18.6 ± 0.5 mg/kg of milk fat). A milk production system using a high proportion of maize silage, by-products, and commercial concentrate mix was associated with milk with high concentrations of linoleic acid (LA; 19.7 ± 0.4 g/kg of fatty acids), monounsaturated fatty acids (27.5 ± 0.3 mg/kg of fatty acids), and a high ratio between LA and α-linolenic acid (4.7 ± 0.2). Comparing these 2 production systems with a very extensive nonorganic milk production system relying on pasture as almost the sole feed (95 ± 4% dry matter intake), it was found that the concentrations of conjugated LA (cis-9,trans-11; 17.5 ± 0.7 g/kg of fatty acids), trans-11-vaccenic acid (37 ± 2 g/kg of fatty acids), and monounsaturated fatty acids (30.4 ± 0.6 g/kg of fatty acids) were higher in the extensively produced milk together with the concentration of antioxidants; total α-tocopherol (32.0 ± 0.8 mg/kg of milk fat), RRR-α-tocopherol (30.2 ± 0.8 mg/kg of milk fat), and β-carotene (9.3 ± 0.5 mg/kg of milk fat) compared with the organic and conventional milk. Moreover, the concentration of LA (9.2 ± 0.7 g/kg of fatty acids) in milk from the extensive milk production system was found to approach the recommended unity ratio between n-6 and n-3, although extensive milk production also resulted in a lower daily milk yield

    Effects of organic and ‘low input’ production methods on food quality and safety

    Get PDF
    The intensification of agricultural production in the last century has resulted in a significant loss of biodiversity, environmental problems and associated societal costs. The use of shorter rotations or monocropping and high levels of mineral fertilisers, pesticides and crop growth regulators may also have had negative impacts on food quality and safety. To reverse the negative environmental and biodiversity impacts of agricultural intensification, a range of different ‘low input’ farming systems have been developed and are now supported by EU and government support schemes. A range of recent reviews concluded that switching to low input, integrated or organic farming practices results in significant environmental benefits and increased biodiversity in agro-ecosystems. Some recent studies also reported higher levels of nutritionally desirable compounds (e.g. vitamins, antioxidants, mineral nutrients) in foods from organic and ‘low input’ production systems compared to food from conventional systems. The increasing demand and current price premiums achieved by foods from low input and especially organic production systems were shown to be closely linked to consumer perceptions about nutritional and health benefits of such foods. However, there are other studies reporting no significant differences in composition between low input and conventional foods, or inconsistent results. There is currently a lack of (a) factorial studies, which allow the effect of individual production system components (e.g. rotation design, fertility management, crop health management, variety choice) on food composition to be assessed and (b) dietary intervention or cohort studies which compare the effect of consuming foods from different production systems on animal and/or human health. It is therefore currently not possible to draw overall conclusions about the effect of low input production on food quality and safety. This paper will (a) describe the range of organic and other ‘low input’ standards, certification and support systems currently used, (b) summarise the currently available information on effects of organic and other low input crop production systems on the environment, biodiversity and food quality, and (c) describe the methodologies and results from subproject 2 of the EU-funded Integrated project QualityLowInputFood. This project focused on improving our knowledge about the effect of organic and low input crop and livestock production systems on food quality and safety parameters

    The off-Shell Electromagnetic Vertex of the Nucleon in Chiral Perturbation Theory

    Full text link
    We study the electromagnetic vertex of a nucleon in next-to-leading order chiral perturbation theory (CPT). We consider the case where one of the nucleons at the γ\gammaNN vertex is off its mass shell. We define relevant measures for the off-shell dependence in the limited kinematical range allowed, and analyze their expansion in the pion mass. The leading nonanalytic contributions are calculated to estimate their size.Comment: 12 pages (LaTeX), 1 figure (available upon request), NIKHEF 93-P

    Горшкоподібний посуд: етнокультурні взаємовпливи

    Get PDF
    The article brings complex comparative analitical study in Ukrainian and foreign types of pottery kitchenware with throwing light upon common and different features in forms and decorations of artefacts as well as with definitions of most characteristic notions that underline originality and nature of Ukrainian ceramics in the context of All-European culture

    Articular contact in a three-dimensional model of the knee

    Get PDF
    This study is aimed at the analysis of articular contact in a three-dimensional mathematical model of the human knee-joint. In particular the effect of articular contact on the passive motion characteristics is assessed in relation to experimentally obtained joint kinematics. Two basically different mathematical contact descriptions were compared for this purpose. One description was for rigid contact and one for deformable contact. The description of deformable contact is based on a simplified theory for contact of a thin elastic layer on a rigid foundation. The articular cartilage was described either as a linear elastic material or as a non-linear elastic material. The contact descriptions were introduced in a mathematical model of the knee. The locations of the ligament insertions and the geometry of the articular surfaces were obtained from a joint specimen of which experimentally determined kinematic data were available, and were used as input for the model. The ligaments were described by non-linear elastic line elements. The mechanical properties of the ligaments and the articular cartilage were derived from literature data. Parametric model evaluations showed that, relative to rigid articular contact, the incorporation of deformable contact did not alter the motion characteristics in a qualitative sense, and that the quantitative changes were small. Variation of the elasticity of the elastic layer revealed that decreasing the surface stiffness caused the ligaments to relax and, as a consequence, increased the joint laxity, particularly for axial rotation. The difference between the linear and the non-linear deformable contact in the knee model was very small for moderate loading conditions. The motion characteristics simulated with the knee model compared very well with the experiments. It is concluded that for simulation of the passive motion characteristics of the knee, the simplified description for contact of a thin linear elastic layer on a rigid foundation is a valid approach when aiming at the study of the motion characteristics for moderate loading conditions. With deformable contact in the knee model, geometric conformity between the surfaces can be modelled as opposed to rigid contact which assumed only point contact

    X-ray structure of a putative reaction intermediate of 5-aminolaevulinic acid dehydratase

    No full text
    The X-ray structure of yeast 5-aminolaevulinic acid dehydratase, in which the catalytic site of the enzyme is complexed with a putative cyclic intermediate composed of both substrate moieties, has been solved at 0.16 nm (1.6 Å) resolution. The cyclic intermediate is bound covalently to Lys(263) with the amino group of the aminomethyl side chain ligated to the active-site zinc ion in a position normally occupied by a catalytic hydroxide ion. The cyclic intermediate is catalytically competent, as shown by its turnover in the presence of added substrate to form porphobilinogen. The findings, combined with those of previous studies, are consistent with a catalytic mechanism in which the C–C bond linking both substrates in the intermediate is formed before the C–N bond
    corecore