5,572 research outputs found

    New specimens of the basal ornithischian dinosaur Lesothosaurus diagnosticus Galton, 1978 from the Early Jurassic of South Africa

    Get PDF
    We describe new specimens of the basal ornithischian dinosaur Lesothosaurus diagnosticus Galton, 1978 collected from a bonebed in the Fouriesburg district of the Free State, South Africa. The material was collected from the upper Elliot Formation (Early Jurassic) and represents the remains of at least three individuals. These individuals are larger in body size than those already known in museum collections and offer additional information on cranial ontogeny in the taxon. Moreover, they are similar in size to the sympatric taxon Stormbergia dangershoeki. The discovery of three individuals at this locality might imply group-living behaviour in this early ornithischian.Palaeontologia africana 2016. ©2016 Paul M. Barrett, Richard J. Butler, Adam M. Yates, Matthew G. Baron&Jonah N. Choiniere. This is an open-access article published under the Creative Commons Attribution 4.0 Unported License (CC BY4.0). To view a copy of the license, please visit http://creativecommons.org/licenses/by/4.0/. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. This item is permanently archived at: http://wiredspace.wits.ac.za/handle/10539/19886. The attached file is the published version of the article

    Water Vapor Transport in Soils from a Pervaporative Irrigation System

    Get PDF

    Biomechanical characterisation of the human nasal cartilages; implications for tissue engineering

    Get PDF
    Nasal reconstruction is currently performed using autologous grafts provides but is limited by donor site morbidity, tissue availability and potentially graft failure. Additionally, current alternative alloplastic materials are limited by their high extrusion and infection rates. Matching mechanical properties of synthetic materials to the native tissue they are replacing has shown to be important in the biocompatibility of implants. To date the mechanical properties of the human nasal cartilages has not been studied in depth to be able to create tissue-engineered replacements with similar mechanical properties to native tissue. The young's modulus was characterized in compression on fresh-frozen human cadaveric septal, alar, and lateral cartilage. Due to the functional differences experienced by the various aspects of the septal cartilage, 16 regions were evaluated with an average elastic modulus of 2.72 ± 0.63 MPa. Furthermore, the posterior septum was found to be significantly stiffer than the anterior septum (p < 0.01). The medial and lateral alar cartilages were tested at four points with an elastic modulus ranging from 2.09 ± 0.81 MPa, with no significant difference between the cartilages (p < 0.78). The lateral cartilage was tested once in all cadavers with an average elastic modulus of 0.98 ± 0.29 MPa. In conclusion, this study provides new information on the compressive mechanical properties of the human nasal cartilage, allowing surgeons to have a better understanding of the difference between the mechanical properties of the individual nasal cartilages. This study has provided a reference, by which tissue-engineered should be developed for effective cartilage replacements for nasal reconstruction

    Biomechanical Characterisation of the Human Auricular Cartilages; Implications for Tissue Engineering

    Get PDF
    Currently, autologous cartilage provides the gold standard for auricular reconstruction. However, synthetic biomaterials offer a number of advantages for ear reconstruction including decreased donor site morbidity and earlier surgery. Critical to implant success is the material's mechanical properties as this affects biocompatibility and extrusion. The aim of this study was to determine the biomechanical properties of human auricular cartilage. Auricular cartilage from fifteen cadavers was indented with displacement of 1 mm/s and load of 300 g to obtain a Young's modulus in compression. Histological analysis of the auricle was conducted according to glycoprotein, collagen, and elastin content. The compression modulus was calculated for each part of the auricle with the tragus at 1.67 ± 0.61 MPa, antitragus 1.79 ± 0.56 MPa, concha 2.08 ± 0.70 MPa, antihelix 1.71 ± 0.63 MPa, and helix 1.41 ± 0.67 MPa. The concha showed to have a significantly greater Young's Elastic Modulus than the helix in compression (p < 0.05). The histological analysis demonstrated that the auricle has a homogenous structure in terms of chondrocyte morphology, extracellular matrix and elastin content. This study provides new information on the compressive mechanical properties and histological analysis of the human auricular cartilage, allowing surgeons to have a better understanding of suitable replacements. This study has provided a reference, by which cartilage replacements should be developed for auricular reconstruction
    • 

    corecore