33 research outputs found

    Tricarballylic ester formation during biosynthesis of fumonisin mycotoxins in \u3ci\u3eFusarium verticillioides\u3c/i\u3e

    Get PDF
    Fumonisins are agriculturally important mycotoxins produced by the maize pathogen Fusarium verticillioides. The chemical structure of fumonisins contains two tricarballylic esters, which are rare structural moieties and important for toxicity. The mechanism for the tricarballylic ester formation is not well understood. FUM7 gene of F. verticillioides was predicted to encode a dehydrogenase/reductase, and when it was deleted, the mutant produced tetradehydro fumonisins (DH4–FB). MS and NMR analysis of DH4–FB1 indicated that the esters consist of aconitate with a 3′-alkene function, rather than a 2′-alkene function. Interestingly, the purified DH4–FB1 eventually yielded three chromatographic peaks in HPLC. However, MS revealed that the metabolites of the three peaks all had the same mass as the initial single-peak DH4–FB1. The results suggest that DH4–FB1 can undergo spontaneous isomerization, probably including both cis–trans stereoisomerization and 3′- to 2′-ene regioisomerization. In addition, when FUM7 was expressed in Escherichia coli and the resulting enzyme, Fum7p, was incubated with DH4–FB, no fumonisin with typical tricarballylic esters was formed. Instead, new fumonisin analogs that probably contained isocitrate and/or oxalosuccinate esters were formed, which reveals new insight into fumonisin biosynthesis. Together, the data provided both genetic and biochemical evidence for the mechanism of tricarballylic ester formation in fumonisin biosynthesis

    \u3ci\u3eFUM13\u3c/i\u3e Encodes a Short Chain Dehydrogenase/Reductase Required for C-3 Carbonyl Reduction during Fumonisin Biosynthesis in \u3ci\u3eGibberella moniliformis\u3c/i\u3e

    Get PDF
    Fumonisins are polyketide-derived mycotoxins produced by the filamentous fungus Gibberella moniliformis (anamorph Fusarium verticillioides). Wild-type strains of the fungus produce predominantly four B-series fumonisins, designated FB1, FB2, FB3, and FB4. Recently, a cluster of 15 putative fumonisin biosynthetic genes (FUM) was described in G. moniliformis. We have now conducted a functional analysis of FUM13, a gene in the cluster that is predicted by amino acid sequence similarity to encode a short chain dehydrogenase/reductase (SDR). Mass spectrometric analysis of metabolites from FUM13 deletion mutants revealed that they produce approximately 10% of wild-type levels of B-series fumonisins as well as two previously uncharacterized compounds. NMR analysis revealed that the new compounds are similar in structure to FB3 and FB4 but that they have a carbonyl function rather than a hydroxyl function at carbon atom 3 (C-3). These results indicate that the FUM13 protein catalyzes the reduction of the C-3 carbonyl to a hydroxyl group and are the first biochemical evidence directly linking a FUM gene to a specific reaction during fumonisin biosynthesis. The production of low levels of FB1, FB2, FB3, and FB4, which have a C-3 hydroxyl, by the FUM13 mutants suggests that G. moniliformis has an additional C-3 carbonyl reductase activity but that this enzyme functions less efficiently than the FUM13 protein

    \u3ci\u3eFusarium\u3c/i\u3e genomic resources: Tools to limit crop diseases and mycotoxin contamination

    Get PDF
    It has been almost 10 years since Joan Bennett suggested that fungal biologists create a ‘‘wish list’’ for fungal genome sequences (Bennett JW. White paper: Genomics for filamentous fungi. Fungal Genet Biol 1997; 21: 3–7). The availability of over 200 review papers concerning fungal genomics is a reflection of significant progress with a diversity of fungal species. Although much progress has been made, the use of genomic data to study mycotoxin synthesis and function, pathogenesis and other aspects of fungal biology is in its infancy. Here, we briefly present the status of publicly available genomic resources for Fusarium, a genus of important plant pathogenic and mycotoxin-producing fungi of worldwide concern. Preliminary examination of microarray data collected from F. verticillioides liquid cultures provides evidence of widespread differential gene expression over time

    \u3ci\u3eFUM9\u3c/i\u3e Is Required for C-5 Hydroxylation of Fumonisins and Complements the Meitotically Defined \u3ci\u3eFum3\u3c/i\u3e Locus in \u3ci\u3eGibberella moniliformis\u3c/i\u3e

    Get PDF
    Deletion of the Gibberella moniliformis FUM9 gene resulted in mutants that produce only fumonisins that lack a C-5 hydroxyl group. This phenotype is identical to that of previously described mutants with defective alleles at the meiotically defined Fum3 locus. Transformation with a wild-type FUM9 gene into a Fum3- defective mutant restored wild-type fumonisin production. These results indicate that the FUM9 protein catalyzes the C-5 hydroxylation of fumonisins and that FUM9 and the Fum3 locus are the same gene

    Deletion Analysis of \u3ci\u3eFUM\u3c/i\u3e Genes Involved in Tricarballylic Ester Formation during Fumonisin Biosynthesis

    Get PDF
    Fumonisins are carcinogenic mycotoxins produced by the maize ear rot pathogen Gibberella moniliformis (anamorph Fusarium verticillioides). These toxins consist of a linear polyketide-derived backbone substituted at various positions with an amine, one to four hydroxyl, two methyl, and two tricarballylic ester functions. In this study, we generated and characterized deletion mutants of G. moniliformis for five genes, FUM7, FUM10, FUM11, FUM14, and FUM16 in the fumonisin biosynthetic gene cluster. Functional analysis of mutants in four genes, predicted to encode unrelated proteins, affected formation of the tricarballylic esters. FUM7 deletion mutants produced a previously undescribed homologue of fumonisin B1 with an alkene function in both tricarballylic esters, FUM10 and FUM14 deletion mutants produced homologues of fumonisin B3 and fumonisin B4 that lack tricarballylic ester functions, and FUM11 deletion mutants produced fumonisins that lack one of the tricarballylic ester functions. These phenotypes indicated specific roles for FUM7, FUM10, FUM11, and FUM14 in fumonisin biosynthesis that are consistent with the predicted proteins encoded by each gene. Deletion of FUM16 had no apparent effect on fumonisin production. The phenotypes of the deletion mutants provide further insight into the order of steps in fumonisin biosynthesis

    Phylogenomic and functional domain analysis of polyketide synthases in \u3ci\u3eFusarium\u3c/i\u3e

    Get PDF
    Fusarium species are ubiquitous in nature, cause a range of plant diseases, and produce a variety of chemicals often referred to as secondary metabolites. Although some fungal secondary metabolites affect plant growth or protect plants from other fungi and bacteria, their presence in grain-based food and feed is more often associated with a variety of diseases in plants and in animals. Many of these structurally diverse metabolites are derived from a family of related enzymes called polyketide synthases (PKSs). A search of genomic sequence of Fusarium verticillioides, Fusarium graminearum, Fusarium oxysporum, and Fusarium solani identified a total of 58 PKS genes. To gain insight into how this gene family evolved and to guide future studies, we conducted phylogenomic and functional domain analyses. The resulting geneaology suggested that Fusarium PKSs represent 34 different groups responsible for synthesis of different core metabolites. The analyses indicate that variation in the Fusarium PKS gene family is due to gene duplication and loss events as well as enzyme gain-of-function due to the acquisition of new domains or of loss-offunction due to nucleotide mutations. Transcriptional analysis indicates that the 16 F. verticillioides PKS genes are expressed under a range of conditions, further evidence that they are functional genes that confer the ability to produce secondary metabolites

    Identification of gene clusters associated with fusaric acid, fusarin, and perithecial pigment production in \u3ci\u3eFusarium verticillioides\u3c/i\u3e

    Get PDF
    The genus Fusarium is of concern to agricultural production and food/feed safety because of its ability to cause crop disease and to produce mycotoxins. Understanding the genetic basis for production of mycotoxins and other secondary metabolites (SMs) has the potential to limit crop disease and mycotoxin contamination. In fungi, SM biosynthetic genes are typically located adjacent to one another in clusters of coexpressed genes. Such clusters typically include a core gene, responsible for synthesis of an initial chemical, and several genes responsible for chemical modifications, transport, and/or regulation. Fusarium verticillioides is one of the most common pathogens of maize and produces a variety of SMs of concern. Here, we employed whole genome expression analysis and utilized existing knowledge of polyketide synthase (PKS) genes, a common cluster core gene, to identify three novel clusters of co-expressed genes in F. verticillioides. Functional analysis of the PKS genes linked the clusters to production of three known Fusarium SMs, a violet pigment in sexual fruiting bodies (perithecia) and the mycotoxins fusarin C and fusaric acid. The results indicate that microarray analysis of RNA derived from culture conditions that induce differential gene expression can be an effective tool for identifying SM biosynthetic gene clusters

    The \u3ci\u3eFusarium verticillioides\u3c/i\u3e FUM Gene Cluster Encodes a Zn(II)2Cys6 Protein That Affects \u3ci\u3eFUM\u3c/i\u3e Gene Expression and Fumonisin Production

    Get PDF
    Fumonisins are mycotoxins produced by some Fusarium species and can contaminate maize or maize products. Ingestion of fumonisins is associated with diseases, including cancer and neural tube defects, in humans and animals. In fungi, genes involved in the synthesis of mycotoxins and other secondary metabolites are often located adjacent to each other in gene clusters. Such genes can encode structural enzymes, regulatory proteins, and/or proteins that provide self-protection. The fumonisin biosynthetic gene cluster includes 16 genes, none of which appear to play a role in regulation. In this study, we identified a previously undescribed gene (FUM21) located adjacent to the fumonisin polyketide synthase gene, FUM1. The presence of a Zn(II)2Cys6 DNA-binding domain in the predicted protein suggested that FUM21 was involved in transcriptional regulation. FUM21 deletion (delta fum21) mutants produce little to no fumonisin in cracked maize cultures but some FUM1 and FUM8 transcripts in a liquid GYAM medium. Complementation of a delta fum21 mutant with a wild-type copy of the gene restored fumonisin production. Analysis of FUM21 cDNAs identified four alternative splice forms (ASFs), and microarray analysis indicated the ASFs were differentially expressed. Based on these data, we present a model for how FUM21 ASFs may regulate fumonisin biosynthesis

    Fumonisin Production in the Maize Pathogen \u3ci\u3eFusarium verticillioides\u3c/i\u3e: Genetic Basis of Naturally Occurring Chemical Variation

    Get PDF
    Fumonisins are polyketide-derived mycotoxins produced by the maize pathogen Fusarium verticillioides. Previous analyses identified naturally occurring variants of the fungus that are deficient in fumonisin C-10 hydroxylation or that do not produce any fumonisins. In the current study, gene deletion and genetic complementation analyses localized the C-10 hydroxylation deficiency to a cytochrome P450 monooxygenase gene in the fumonisin biosynthetic gene (FUM) cluster. Sequence analysis indicated that the hydroxylation deficiency resulted from a single nucleotide insertion that caused a frame shift in the coding region of the gene. Genetic complementation localized the fumonisinnonproduction phenotype to the polyketide synthase gene in the FUM cluster, and sequence analysis indicated that the nonproduction phenotype resulted from a nucleotide substitution, which introduced a premature stop codon in the coding region. These results provide the first direct evidence that altered fumonisin production phenotypes of naturally occurring F. verticillioides variants can result from single point mutations in the FUM cluster

    FUM9 Is Required for C-5 Hydroxylation of Fumonisins and Complements the Meitotically Defined Fum3 Locus in Gibberella moniliformis

    No full text
    Deletion of the Gibberella moniliformis FUM9 gene resulted in mutants that produce only fumonisins that lack a C-5 hydroxyl group. This phenotype is identical to that of previously described mutants with defective alleles at the meiotically defined Fum3 locus. Transformation with a wild-type FUM9 gene into a Fum3-defective mutant restored wild-type fumonisin production. These results indicate that the FUM9 protein catalyzes the C-5 hydroxylation of fumonisins and that FUM9 and the Fum3 locus are the same gene
    corecore