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FUM13 Encodes a Short Chain Dehydrogenase/Reductase
Required for C-3 Carbonyl Reduction during Fumonisin

Biosynthesis in Gibberella moniliformis

ROBERT A. E. BUTCHKO,* RONALD D. PLATTNER, AND ROBERT H. PROCTOR

National Center for Agricultural Utilization Research, Agricultural Research Service,
U.S. Department of Agriculture, 1815 North University Street, Peoria, Illinois 61604-3999

Fumonisins are polyketide-derived mycotoxins produced by the filamentous fungus Gibberella
moniliformis (anamorph Fusarium verticillioides). Wild-type strains of the fungus produce predominantly
four B-series fumonisins, designated FB1, FB2, FB3, and FB4. Recently, a cluster of 15 putative
fumonisin biosynthetic genes (FUM) was described in G. moniliformis. We have now conducted a
functional analysis of FUM13, a gene in the cluster that is predicted by amino acid sequence similarity
to encode a short chain dehydrogenase/reductase (SDR). Mass spectrometric analysis of metabolites
from FUM13 deletion mutants revealed that they produce approximately 10% of wild-type levels of
B-series fumonisins as well as two previously uncharacterized compounds. NMR analysis revealed
that the new compounds are similar in structure to FB3 and FB4 but that they have a carbonyl function
rather than a hydroxyl function at carbon atom 3 (C-3). These results indicate that the FUM13 protein
catalyzes the reduction of the C-3 carbonyl to a hydroxyl group and are the first biochemical evidence
directly linking a FUM gene to a specific reaction during fumonisin biosynthesis. The production of
low levels of FB1, FB2, FB3, and FB4, which have a C-3 hydroxyl, by the FUM13 mutants suggests
that G. moniliformis has an additional C-3 carbonyl reductase activity but that this enzyme functions
less efficiently than the FUM13 protein.

KEYWORDS: Fumonisin; Gibberella moniliformis ; Fusarium verticillioides ; mycotoxin; gene cluster

INTRODUCTION

Fumonisins are polyketide-derived secondary metabolites
produced by the filamentous fungusGibberella moniliformis
Wineland (anamorphFusarium Verticillioides (Sacc.) Niren-
berg). These toxins, and others such as the AAL toxins of
Alternaria alternataf. sp. lycopersici, have been described as
sphingosine analogue mycotoxins because of the structural
similarities they share with the sphingolipid intermediate
sphingosine. In animal cells, fumonisins have been shown to
inhibit sphingosineN-acyltransferase thereby blocking sphin-
golipids biosynthesis (1). G. moniliformiscauses ear and stalk
rot of maize but can also be present in maize tissues without
causing disease symptoms (2). Fumonisin induces leukoen-
cephalomalacia, pulmonary edema, and cancer when ingested
by horses, swine, and laboratory rodents, respectively (3, 4),
and in some parts of the world where maize is a dietary staple,
fumonisins have been implicated in human esophageal cancer
(4).

Recently, a fumonisin biosynthetic gene cluster has been
described on chromosome 1 inG. moniliformis(5). This cluster
consists of 15 coregulated genes (FUM1 and FUM6 through
FUM19). Amino acid sequence analysis indicated that 11 of

the clustered genes are predicted to encode enzymes that catalyze
biosynthetic reactions; two are predicted to encode transporters;
and the two remaining genes are predicted to encode longevity
assurance factors, which may have a self-protection function.
To date, sixFUM genes have been examined via disruption
analysis. However, these analyses have not revealed the exact
function of any of the genes. Disruptions ofFUM1 (formerly
FUM5), FUM6, andFUM8, which are predicted to encode a
polyketide synthase, cytochrome P450 monooxygenase, and
amino transferase, respectively, blocked fumonisin production
but did not lead to the accumulation of identifiable fumonisin
intermediates (6, 7). Disruption ofFUM17 andFUM18, which
are predicted to encode longevity assurance factors, had no effect
on fumonisin production (5). Disruption ofFUM19, which is
predicted to encode an ABC transporter, resulted in a subtle
alteration in the ratios of FB1, FB2, and FB3 produced (5).

FUM13 is predicted to encode a 369-AA polypeptide with
sequence similarity/identity to short chain dehydrogenases/
reductases (SDRs). SDRs include enzymes that catalyze the
dehydrogenation or reduction of various substrates, such as
alcohols, steroids, sugars, and aromatic compounds (8). Homol-
ogy between any two SDRs is generally low. However, two
regions are conserved. An amino-terminal nucleotide binding
site (Thr-Gly-X2-3-Gly-X1-2-Gly) and the active site, which
varies from a conserved triad of Ser, Tyr, and Lys residues to
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conservation of the Tyr residue only (8). In the current study,
we characterized the function of theG. moniliformis FUM13
by gene deletion analysis.

MATERIALS AND METHODS

Strains and Media. G. moniliformiswild-type strain M-3125 was
used throughout this study (9). The fungus was cultured on solid V8
juice medium for the production of conidia, in liquid GYEP (5%
glucose, 0.1% yeast extract, and 0.1% peptone) for genomic DNA
preparation, and in cracked corn medium for analysis of fumonisin
production (7, 10).

Fumonisin Analysis.G. moniliformisstrains were initially screened
by culturing on cracked corn for 2 weeks. Fumonisins were extracted
with acetonitrile:water (1:1) as previously described (6). Extracts were
diluted 100-fold with acetonitrile:water, and 10µL aliquots were
analyzed by liquid chromatography/mass spectrometry (LC/MS) as
previously described (11). For purification and isolation of fumonisins
and related compounds, strains were cultured on cracked corn for 4
weeks and extracted as above. The extracts of six 50 g cultures were
diluted with five volumes of water. This solution was fractionated using
a preparative high-performance liquid chromatography (HPLC) column
module (Ranin Instrument Co., Woburn, MA) at a flow rate of 5 mL/
min using a linear solvent gradient from 20:80 (acetonitrile:water) to
50:50 over 120 min and a second wash gradient from 50:50 to 70:30

over 60 min followed by a final 60 min wash at 70:30. Fractions (50
mL) were collected during the first gradient wash. Fractions were
analyzed by LC/MS, and those containing similar fumonisin homo-
logues were combined from several batches. Combined fractions were
extracted with methylene chloride to remove unwanted components
and chromatographed again following the protocol above to obtain
fractions containing purified fumonisins for structural characterization
by NMR. NMR spectra were obtained with a Bruker (Billerica, MA)
Avance 400 spectrometer equipped with a 5 mminverse broadband
Z-gradient probe (13C NMR, 100 MHz, 1H, 400 MHz).

Gene Deletion and Transformation.The FUM13 gene deletion
vector, pFUM13KOH, was constructed by amplifying approximately
1 kbp regions flanking both ends of theFUM13 coding region from
cosmid cloned DNA following a polymerase chain reaction (PCR)-
based approach developed by Brown et. al (12). Primers 13-1 and 13-2
(Figure 1 andTable 1) were used to amplify the region upstream of
theFUM13 start site. Primers 13-3 and 13-4 were used to amplify the
region downstream of theFUM13 stop codon. Each primer included a
restriction enzyme site (Table 1) that was used in subsequent subcloning
steps. Primer 13-1 incorporated aBamHI site, primers 13-2 and 13-3
incorporatedAscI sites, and primer 13-4 incorporated anXbaI site.
Figure 1 shows the successive subcloning steps. The PCR products
were subcloned into plasmid vector pT7-Blue (Novagen). TheBamHI/
AscI fragment containing the upstream flanking region was subcloned
into the vector containing the downstream flanking region. This created

Figure 1. Engineering deletion vector pFUM13KOH. 13-1 through 13-4, 13-9 through 13-12, rp250, and 1098 indicate PCR primer sites. FUM13 indicates
the location of the FUM13 coding region. HygB indicates the hygromycin resistance gene.
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a vector containing the upstream and downstream flanking regions in
the appropriate orientation separated by anAscI site. Last, a 2.5 kbp
AscI fragment containing the hygromycin B resistance gene (HygB)
(13) was subcloned into theAscI site of theFUM13 deletion vector.
All PCR products were generated usingPfu polymerase (Stratagene),
and their nucleotide sequences were determined to verify the absence
of any inadvertent mutations. Vector pFUM13KOH was designed such
that homologous recombination of the vector with regions upstream
and downstream of theFUM13 coding region would result in
replacement of the entire coding region with theHygBresistance gene.

Transformation ofG. moniliformisstrain M-3125 was carried out
using the protoplast method previously described with circular plasmid
DNA and the modifications noted below (6). Protoplasts were regener-
ated on a high osmotic medium (0.1% yeast extract, 0.1% casein-
enzyme hydrolysate, 0.8 M sucrose, and 1.6% agar), and hygromycin
resistant transformants were selected by overlaying with 1% water agar
containing 300µg/mL hygromycin B. Putative transformants were
subsequently transferred to YEPD (0.3% yeast extract, 1% peptone,
and 2% glucose) amended with 150µg/mL hygromycin B. To ensure
that each transformant represented only a single strain, all transformants
were regrown from a single conidium prior to nucleic acid and
fumonisin analysis.

Nucleic Acid Analysis of Transformants.Genomic DNA, for use
in PCR, was prepared from mycelia grown on V8 juice agar. The
mycelium was scraped from the agar surface and placed in 250µL of
extraction buffer (200mM Tris, pH 8.0, 250 mM NaCl, 25mM
ethylenediaminetetraacetic acid (EDTA), 0.5% sodium dodecyl sulfate
(SDS)) in a 1.7 mL Eppendorf tube, ground with a micropestle, and
incubated for 10 min at 75°C. After the mixture was heated, 250µL
of a 1:1 mixture of TRIS-saturated phenol:chloroform:isoamyl alcohol
(25:24:1) was added and the mixture was vortexed for 30 s. The aqueous
phase was separated by centrifugation and removed to a fresh tube.
Genomic DNA was purified from this solution using UltraBind
following the manufacture’s directions (Mo Bio, Solana Beach, CA).

PCR primers were designed to allow the amplification of bands
specific to both 5′ and 3′ recombination events. Primer pairs 13-9/
13-8 and 13-10/13-7 were used to detect the presence of an intact wild-
typeFUM13 at the 5′ and 3′ ends, respectively, of theFUM13 coding
region. Primer pair 13-9/1098 was used to detect homologous recom-
bination between the 1 kb region immediately upstream of theFUM13
coding region and the deletion vector. Likewise, primer pair 13-10/
rp250 was used to detect homologous recombination between the 1 kb
region immediately downstream of theFUM13 coding region and the
deletion vector. The position of each primer is shown inFigure 1, and
the primer sequences are shown inTable 1.

Southern blots were performed using standard protocols (14) to
confirm the deletion of theFUM13 coding region in transformants.
High molecular weight genomic DNA was prepared with the DNeasy
plant kit (Qiagen) from GYEP-grown mycelia. DNA of selected
transformants was doubly digested withXhoI/HindIII. Digested DNA
was electrophoresed and blotted to nylon membrane. The hybridization
probe consisted of a 1381 bpXhoI/HindIII fragment spanning 779 bp

of the 5′ end ofFUM13 plus 602 bp upstream of the start codon. DNA
was labeled with32P using the RediprimeII kit (Amersham Pharmacia
Biotech).

RESULTS

FUM13 Encodes a SDR.Preliminary RPS-BLAST (15)
analysis ofFUM13and subsequent protein alignment compiled
with DNAMAN software (Lynnon BioSoft) revealed that the
predictedFUM13protein shares significant similarity to SDRs.
The amino acid identity between any two SDRs is typically
low, between 10 and 30% (8). This is true for the predicted
FUM13 protein, which shares from 14 to 25% identity with
the four proteins to which it is most similar (Figure 2). The
FUM13 protein has a putative N-terminal nucleotide binding
region at AA 12-18 and a putative active site Tyr residue at
AA 119 (Figure 2). Alignment with the proteins shown in
Figure 2 illustrates the diversity of the enzymatic reactions
catalyzed by SDR proteins. A tblastn search using theFUM13
nucleotide sequence to search the translated database at NCBI
reveals many new homologies to predicted protein sequences
arising from the ever-growing database of ESTs. These proteins
share significantly more sequence similarity/identity at the amino
acid level than the proteins presented inFigure 2; however,
there are no experimental data to support their function as
dehydrogenases/reductases.

Deletion of FUM13. We generated deletion mutants ofG.
moniliformis FUM13 by transformation of wild-type strain
M-3125 with vector pFUM13KOH. This vector was constructed
so that its recombination with homologous sequences on both
sides of theFUM13 coding region would result in replacement
of the coding region with the hygromycin resistance gene,HygB.
A PCR strategy was designed to distinguish between transfor-
mants with an intact wild-typeFUM13 and those in which the
FUM13 coding region had been deleted. Transformants were
first assayed for loss of a PCR product indicative of the wild-
typeFUM13 and then for gain of a PCR product indicative of
recombination between the vector and theFUM13 flanking
sequences. PCR analysis of 35 hygromycin B resistant isolates
recovered following transformation revealed that in two (GMT-
13-208 and GMT-13-224) theFUM13 coding region had been
replaced byHygB. The remainder had integrated only at one
side of FUM13 or the vector integrations elsewhere in the
genome. In subsequent Southern blot analyses, we included one
representative transformant (GMT-13-212) that contained a
single homologous integration event at the 5′ end of FUM13
and another representative transformant (GMT-13-201) that
contained an ectopic integration of the vector elsewhere in the
genome. Southern analysis confirmed the deletion of theFUM13
coding region in transformants GMT-13-208 and GMT-13-224
and the presence of the wild-typeFUM13band in transformants
GMT-13-201 and GMT-13-212 (Figure 3). Replacement of the
FUM13 coding region withHygB results in the loss of a 1381
bp band and the gain of a 3305 bp band (containingHygB)
when hybridized with the 1381 bpXhoI/HindIII fragment
described in the Materials and Methods.

Fumonisin Analysis.The twoFUM13 deletion mutants, the
5′ integration transformant, the ectopic integration transformant,
and their wild-type progenitor strain, M-3125, were cultured
on cracked corn to assess their ability to produce fumonisins.
Initial LC/MS analysis of cracked maize culture extracts
indicated that production of FB1, FB2, FB3, and FB4 was reduced
by at least 90% in theFUM13 deletion mutants as compared to
the wild-type strain and the other transformants. Fumonisin
levels in uninoculated cracked corn were below detectable levels.

Table 1. PCR Primer Sequences Used in This Studya

name sequence

13-1 GACGGATCCATGCGCAGCGTACTACTCCG
13-2 GACGGCGCGCCATAAGTAAGATGACCAACGTGAGGACT
13-3 GACGGCGCGCCAGTACCTTGGCTCGTCTGC
13-4 GACTCTAGACGATGAACAACTTTCCCG
13-7 CAACGACCTTACCACTACA
13-8 CGTCGAAATGTAGTGGTAAG
13-9 AAGGGTTACGCTGCTATCCC
13-10 CGACGGAATATGCTAGTCTA
rp250 CTGCTGCATTCCCATTCCCATCGT
1098 ACCAAGCCTATGCCTACAGCATCC

a Italics indicate restriction endonuclease sites engineered for subcloning
procedures. GGATCC, recognition sequence for BamHI; GGCGCGCC, recognition
sequence for AscI; and TCTAGA, recognition sequence for XbaI.
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The LC/MS analysis ofFUM13 deletion mutants also
revealed that they produce several metabolites not seen in the
wild-type strain (Figure 4). Relative amounts of these metabo-
lites were approximately 60-80% of the total amount of
fumonisins B1, B2, and B3 from the wild-type. The two major
metabolites observed in the deletion strains had protonated
molecular ions atm/z 704 and 688. These molecular ions
correspond to a loss of two mass units from FB2/FB3 and FB4,
respectively, and are consistent with the presence of a carbonyl
group at C-3 of the fumonisin backbone. These two new
metabolites were proposed to be 3-keto homologues of FB3 and
FB4 based on their HPLC retention times. After them/z 704
metabolite was purified, it was hydrolyzed with 2 N KOH in
methanol. LC/MS analysis of the resulting mixture revealed a
component that eluted slightly earlier than the expected retention
time of hydrolyzed FB3 with a signal atm/z 388, which is
consistent with the molecular weight of 387 expected for
hydrolyzed 3-keto FB3. Similarly, the LC/MS of hydrolyzed
products of the purifiedm/z 688 metabolite revealed a compo-
nent with a signal atm/z 374, which is consistent with the
expected molecular weight of hydrolyzed 3-keto FB4.

NMR analysis revealed that the proton spectrum of the
putative 3-keto-FB3 homologue was identical to the FB3

spectrum except for three signals that were consistent with the
presence of a C-3 carbonyl rather than a C-3 hydroxyl on the
3-keto homologue. First, the FB3 spectrum included a signal at
3.45 ppm corresponding to the C-3 hydrogen. The spectrum of
the putative 3-keto homologue does not include this signal and,
therefore, is consistent with the absence of a C-3 hydrogen.
Second, the FB3 spectrum had a signal at 1.3 ppm corresponding
to the hydrogen atoms at C-1. In the spectrum of the 3-keto
homologue, this second signal was shifted to 1.49 ppm, a shift
that was consistent with the C-1 hydrogen atoms beingâ to a
carbonyl group rather than to a hydroxyl group. Finally, the
FB3 spectrum included a signal at 3.1 ppm corresponding to
the hydrogen at C-2. In the spectrum of the 3-keto homologues,
this third signal was shifted to 4.14 ppm, a shift that was
consistent with the C-2 hydrogen being adjacent to a carbon
rather than to a hydroxyl carbon.

The carbon NMR spectra of FB3 (16) and the 3-keto-FB3
homologue were also identical except that the signal in the FB3

spectrum at 73.10 ppm, which corresponds to C-3, was shifted

Figure 2. Amino acid comparison between FUM13 and four closely related SDR-like proteins. S.p., Schizosaccharomyces pombe putative cinnamoyl-
CoA reductase (GI:19114893); Z.m., Zea mays dihydrokaempferol 4-reductase (GI:7427698); S.c., S. cerevisiae putative 3â-hydroxysteroid dehydrogenase
(GI:1723793); A.t., Arabidopsis thaliana putative steroid dehydrogenase (GI:2459443).
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to 207.64 ppm in the spectrum of the keto homologue.Table
2 lists the carbon shifts for fumonisin B3 (16, 17) and the 3-keto-
FB3 homologue that accumulates in theFUM13deletion mutant.
This shift at carbon atom 3 is consistent with the presence of a
carbonyl carbon rather than a hydroxyl carbon.

DISCUSSION

On the basis of the chemical structures of fumonisins and
precursor feeding studies, fumonisin biosynthesis is predicted
to include at least five groups of biochemical reactions: (i)
synthesis of a linear polyketide with a single terminal carbonyl
function and methyl groups at C-10 and C-14; (ii) condensation
of the polyketide with alanine; (iii) reduction of the polyketide
carbonyl to a hydroxyl; (iv) hydroxylation of 2-4 polyketide
carbons; and (v) esterification of six-carbon tricarboxylic acids
to two of the hydroxyls. In the current study, the accumulation
of 3-keto homologues of FB3 and FB4 in FUM13 deletion
mutants indicates that the SDR encoded byFUM13 catalyzes
the reduction of the polyketide carbonyl to a hydroxyl during
fumonisin biosynthesis (Figure 5). To our knowledge, this is
the first evidence directly linking a gene in the fumonisin gene
cluster with a specific biochemical reaction in fumonisin
biosynthesis. The functions of most of the genes in the fumonisin
gene cluster were predicted based on the results from BLAST
sequence comparison (15). However, previous attempts to

Figure 3. Southern analysis of G. moniliformis transformants. Genomic
DNA was prepared from four transformants plus the wild-type progenitor
strain as described in the Materials and Methods. Using a probe to the
5′ end of the gene, strain M-3125 shows the hybridization of the 1381-bp
wild-type FUM13 band. Strains GMT-224 and GMT-208 contain deletions
of FUM13 as indicated by the shift of the hybridizing band to 3305-bp
and the absence of the wild-type hybridization band. Strains GMT-201
and GMT-212 harbor ectopic copies of the deletion construct and thus
have both the wild-type FUM13 hybridization band and the 3305-bp band.

Figure 4. (A) Major fumonisin homologues produced by wild-type strain
M-3125. (B) Major fumonisin homologues produced by G. moniliformis
FUM13 deletion mutants.

Figure 5. Proposed role of the FUM13 protein in the modification of the
carbonyl end of the putative fumonisin polyketide during fumonisin
biosynthesis.

Table 2. 13Carbon NMR Shift for 3-Keto Fumonisin B3

carbon FB3 3-keto-FB3 carbon FB3 3-keto-FB3

1 15.9q 20.7q 18 30.7t 30.0t
2 53.5d 44.6d 19 23.8t 24.0t
3 73.1d 207.6d 20 14.4q 15.8q
4 34.6t 39.1t 21 16.0q 16.1q
5 26.2t 24.2t 22 20.6q 20.8q
6 26.1t 29.7t 25 173.1s 173.3s
7 26.8t 30.6t 26 36.6t 39.2t
8 29.6t 26.2t 27 38.6d 39.4d
9 39.3t 39.2t 28 36.1t 36.8t

10 69.9d 70.0d 29 177.0s 176.7s
11 44.5t 44.7t 30 175.2s 178.2s
12 26.9d 30.0d 33 173.0s 173.2s
13 36.4t 37.1t 34 36.6t 36.8t
14 73.1d 73.0d 35 38.6d 39.1d
15 78.8d 78.8d 36 36.1t 37.1t
16 34.9d 33.1d 37 176.6s 176.2s
17 33.1t 33.1t 38 175.0s 177.7s
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confirm the predicted functions of five of the genes (FUM6,
FUM8, FUM17, FUM8, andFUM19) by gene disruption were
not successful. For example, in the cases ofFUM6 andFUM8,
disruption blocked fumonisin production but did not result in
accumulation of unusual fumonisin homologues that would
provide evidence for the activities of the enzymes encoded by
these genes (6, 7). By contrast, in this study, the accumulation
of 3-keto FB3 and 3-keto FB4 homologues provides evidence
that FUM13 encodes a C-3 carbonyl reductase.

The 3-keto fumonisin homologues produced byFUM13
deletion mutants provide further evidence that fumonisin
biosynthesis uses a biosynthetic pathway analogous to that of
the sphingolipid intermediate, sphinganine (18). Sphinganine
synthesis begins with the condensation of palmitoyl-CoA and
Ser to yield 3-ketosphinganine. The carbonyl of 3-ketosphin-
ganine is then reduced to a hydroxyl to yield sphinganine. In
Saccharomyces cereVisiae, a 3-ketosphinganine reductase en-
coded byTSC10catalyzes this latter reaction and is predicted
to be an SDR based on sequence analysis (19). Even though
theTSC10andFUM13proteins are both SDRs and they catalyze
analogous reactions, the two proteins are only about 10%
identical over their entire length (data not shown).

Similarities between the structures and the biosynthesis of
fumonisins and sphinganine suggest that the fumonisin C-3
oxygen is derived from acetate via a polyketide (5). This
hypothesis is supported by mass spectrometric data on FB1

produced byG. moniliformiscultures in18O2 or H2
18O feeding

experiments carried out previously by Caldas et al. (20). When
H2

18O was fed to the cultures, up to seven18O atoms were
incorporated into FB1. Upon hydrolysis, which cleaves the
tricarballylic esters from the fumonisin backbone, the FB1

backbone lost all but one of the18O atoms. These results indicate
that only one18O atom was attached directly to the fumonisin
backbone and that the others were incorporated into the
tricarballylic esters. In contrast, when18O2 was fed to the
cultures, up to four18O atoms were incorporated into FB1. Upon
hydrolysis, the FB1 backbone retained all four18O atoms.
Although the Caldas et al. paper did not state it, the data
presented (20) are most consistent with four of the five oxygen
atoms attached directly to the FB1 backbone being derived from
18O2 and the fifth being derived from H218O. We propose that
the C-3 oxygen is derived from H218O. C-3 of the fumonisin
backbone corresponds to C-1 of the polyketide precursor. In
nascent polyketides, the C-1 position typically has a carbonyl
function that corresponds to the carbonyl function of the final
acetate incorporated into a polyketide. If in the feeding studies
described by Caldas et al. (20) the 18O atom from H2

18O was
incorporated into acetate (e.g., via exchange of oxygen between
water and carboxylic acid), it could be incorporated into the
polyketide precursor of fumonisins via the activity of the
polyketide synthase encoded byFUM1 (6). In contrast, the
oxygen atoms at C-5, C-10, C-14, and C-15 of the fumonisin
backbone could be derived from O2 by the activities of the
monooxygenases (FUM6, FUM12, andFUM15) and dioxyge-
nase (FUM9) encoded by the fumonisin gene cluster (5). These
oxygenases utilize O2 to catalyze the formation of hydroxyl
functions. This seems likely for the C-10 and C-14 oxygen atoms
because they do not correspond to acetate carbonyls and
therefore should be added to the fumonisin backbone after it is
formed. Likewise, the C-5 oxygen is absent in FB3 and FB4

and therefore is also most likely added to the backbone after it
is formed.

Although theFUM13 protein is most likely to catalyze the
reduction of C-3 carbonyl of fumonisins inG. moniliformis, it

is not essential for fumonisin production. This was evident by
the production of low levels of FB1, FB2, FB3, and FB4 in the
FUM13 deletion mutants. It is possible that these C-3-hydroxy-
lated fumonisins are produced in the deletion mutants because
of a partial redundancy ofFUM13. That is,G. moniliformis
may produce another enzyme(s) with the same activity as
FUM13. Fumonisin production byFUM17, FUM18, and
FUM19 disruption mutants indicates that these genes may also
have redundant functions (5). Nevertheless, the low levels of
C-3-hydroxylated fumonisins produced by theFUM13mutants
indicate that if a second enzyme with C-3 carbonyl reductase
activity exists, its activity is less than that of theFUM13protein.
A possible candidate for a second enzyme with this activity is
3-ketosphinganine reductase (19). As noted above, the carbonyl
reduction of 3-ketosphinganine is analogous to the C-3 carbonyl
reduction during fumonisin biosynthesis. Although a pathway
for sphingolipid biosynthesis has not been described inG.
moniliformis, it is likely that the fungus produces these lipids
and has aTSC10homologue because otherFusariumspecies
produce sphingolipids (21).

The accumulation of 3-keto homologues of FB3 and FB4 but
not the equivalent FB1 and FB2 homologues in cultures of
FUM13 deletion mutants suggests that during fumonisin bio-
synthesis the C-3 carbonyl reduction must occur before the C-5
hydroxylation. The C-5 hydroxyl is absent in FB3, FB4, and
their 3-keto homologues but present in FB1 and FB2. If the C-5
hydroxylation could occur before the C-3 carbonyl reduction,
FUM13 mutants would be expected to accumulate 3-keto
homologues of FB1 and FB2 along with those of FB3 and FB4.
In contrast, the C-10 position of the fumonisin backbone can
be hydroxylated independently of C-3 carbonyl reduction. This
is evident because the only structural difference between the
3-ketoFB3 and the 3-ketoFB4 is the C-10 hydroxyl; it is present
in 3-ketoFB3 and absent in 3-ketoFB4. These findings are
consistent with precursor feeding experiments that indicated that
the C-10 hydroxylation occurs earlier in fumonisin biosynthesis
and that the C-5 hydroxylation occurred late in the biosynthesis
(22).

Over the past decade, it has become evident that genes
involved in the biosynthesis of a given fungal secondary
metabolite tend to be clustered into groups of coregulated genes.
Gene clusters have been described for mycotoxin biosynthetic
pathways as well as for antibiotic biosynthetic and metabolite
utilization pathways in fungi (23, 24). The description and
characterization of these gene clusters have facilitated elucida-
tion of the biochemical pathways for the corresponding me-
tabolites and provided insight into the regulatory mechanisms
of metabolite production or utilization (12, 23, 25). The recent
description of a fumonisin biosynthetic gene cluster inG.
moniliformis (5) has allowed us to further characterize the
biochemical pathway leading to the formation of fumonisins.
FUM13, predicted to encode a SDR, is part of this biosynthetic
gene cluster inG. moniliformisand through deletion analysis
has been shown to be involved in fumonisin biosynthesis.
Currently, we are disrupting the remaining genes in theFUM
gene cluster to determine their functions in fumonisin biosyn-
thesis. These studies should also provide further insight into
the sequence of biochemical reactions that lead to the formation
of fumonisins.
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