475 research outputs found

    Human-specific CpG "beacons" identify loci associated with human-specific traits and disease.

    Get PDF
    Regulatory change has long been hypothesized to drive the delineation of the human phenotype from other closely related primates. Here we provide evidence that CpG dinucleotides play a special role in this process. CpGs enable epigenome variability via DNA methylation, and this epigenetic mark functions as a regulatory mechanism. Therefore, species-specific CpGs may influence species-specific regulation. We report non-polymorphic species-specific CpG dinucleotides (termed "CpG beacons") as a distinct genomic feature associated with CpG island (CGI) evolution, human traits and disease. Using an inter-primate comparison, we identified 21 extreme CpG beacon clusters (≥ 20/kb peaks, empirical p < 1.0 × 10(-3)) in humans, which include associations with four monogenic developmental and neurological disease related genes (Benjamini-Hochberg corrected p = 6.03 × 10(-3)). We also demonstrate that beacon-mediated CpG density gain in CGIs correlates with reduced methylation in these species in orthologous CGIs over time, via human, chimpanzee and macaque MeDIP-seq. Therefore mapping into both the genomic and epigenomic space the identified CpG beacon clusters define points of intersection where a substantial two-way interaction between genetic sequence and epigenetic state has occurred. Taken together, our data support a model for CpG beacons to contribute to CGI evolution from genesis to tissue-specific to constitutively active CGIs

    Effect of the haematocrit layer geometry on Plasmodium falciparum static thin-layer in vitro cultures

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>In vitro </it>cultivation of <it>Plasmodium falciparum </it>is usually carried out through the continuous preservation of infected erythrocytes deposited in static thin layers of settled haematocrit. This technique, called the candle-jar method, was first achieved by Trager and Jensen in 1976 and has undergone slight modifications since then. However, no systematic studies concerning the geometry of the haematocrit layer have been carried out. In this work, a thorough investigation of the effects of the geometric culturing conditions on the parasite's development is presented.</p> <p>Methods</p> <p>Several experimental trials exploring different settings have been carried out, covering haematocrit layer depths that ranged from 6 mm to 3 mm and separation between the walls of the culturing device that ranged from 7.5 mm to 9 mm. The obtained results have been analysed and compared to different system-level models and to an Individual-Based Model.</p> <p>Conclusion</p> <p>In line with the results, a mechanism governing the propagation of the infection which limits it to the vicinity of the interface between the haematocrit layer and the culture medium is deduced, and the most appropriate configurations are proposed for further experimental assays.</p

    Vaccination with Plasmodium knowlesi AMA1 Formulated in the Novel Adjuvant Co-Vaccine HT™ Protects against Blood-Stage Challenge in Rhesus Macaques

    Get PDF
    Plasmodium falciparum apical membrane antigen 1 (PfAMA1) is a leading blood stage vaccine candidate. Plasmodium knowlesi AMA1 (PkAMA1) was produced and purified using similar methodology as for clinical grade PfAMA1 yielding a pure, conformational intact protein. Combined with the adjuvant CoVaccine HT™, PkAMA1 was found to be highly immunogenic in rabbits and the efficacy of the PkAMA1 was subsequently tested in a rhesus macaque blood-stage challenge model. Six rhesus monkeys were vaccinated with PkAMA1 and a control group of 6 were vaccinated with PfAMA1. A total of 50 µg AMA1 was administered intramuscularly three times at 4 week intervals. One of six rhesus monkeys vaccinated with PkAMA1 was able to control parasitaemia, upon blood stage challenge with P. knowlesi H-strain. Four out of the remaining five showed a delay in parasite onset that correlated with functional antibody titres. In the PfAMA1 vaccinated control group, five out of six animals had to be treated with antimalarials 8 days after challenge; one animal did not become patent during the challenge period. Following a rest period, animals were boosted and challenged again. Four of the six rhesus monkeys vaccinated with PkAMA1 were able to control the parasitaemia, one had a delayed onset of parasitaemia and one animal was not protected, while all control animals required treatment. To confirm that the control of parasitaemia was AMA1-related, animals were allowed to recover, boosted and re-challenged with P. knowlesi Nuri strain. All control animals had to be treated with antimalarials by day 8, while five out of six PkAMA1 vaccinated animals were able to control parasitaemia. This study shows that: i) Yeast-expressed PkAMA1 can protect against blood stage challenge; ii) Functional antibody levels as measured by GIA correlated inversely with the day of onset and iii) GIA IC50 values correlated with estimated in vivo growth rates

    Comparison of the in vitro invasive capabilities of Plasmodium falciparum schizonts isolated by Percoll gradient or using magnetic based separation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Percoll gradient centrifugation is often used for synchronization, enrichment, or isolation of a particular stage of <it>Plasmodium falciparum</it>. However, Percoll, a hyperosmotic agent, may have harmful effects on the parasites. Magnetic bead column (MBC) separation has been used as an alternative. This is a report of a head-to-head comparison of the <it>in vitro </it>invasive capabilities of parasites isolated by either of the two methods.</p> <p>Methods</p> <p>The <it>P. falciparum </it>laboratory strain isolate 7G8 was grown <it>in vitro </it>using standard procedures and synchronized using 5% sorbitol. On separate days when the schizont parasitaemia was >1%, the culture was split and half was processed by Percoll gradient centrifugation and the other half by magnetic bead column separation. Both processed parasites were placed back in culture and allowed to invade new uninfected erythrocytes.</p> <p>Results</p> <p>In 10 paired assays, the mean efficiency of invasion of 7G8 parasites treated by Percoll gradient centrifugation was 35.8% that of those treated by magnetic bead column separation (95% CI, p = 0.00067) A paired <it>t </it>test with two tails was used for these comparisons.</p> <p>Conclusions</p> <p>In this comparison, magnetic bead column separation of 7G8 schizonts resulted in higher viability and efficiency of invasion than utilizing Percoll gradient centrifugation.</p

    Melatonin reduces TNF-a induced expression of MAdCAM-1 via inhibition of NF-kB.

    Get PDF
    BACKGROUND: Endothelial MAdCAM-1 (mucosal addressin cell adhesion molecule-1) expression is associated with the oxidant-dependent induction and progress of inflammatory bowel disease (IBD). Melatonin, a relatively safe, potent antioxidant, has shown efficacy in several chronic injury models may limit MAdCAM-1 expression and therefore have a therapeutic use in IBD. METHODS: We examined how different doses of melatonin reduced endothelial MAdCAM-1 induced by TNF-a in an in vitro model of lymphatic endothelium. Endothelial monolayers were pretreated with melatonin prior to, and during an exposure, to TNF-a (1 ng/ml, 24 h), and MAdCAM-1 expression measured by immunoblotting. RESULTS: MAdCAM-1 was induced by TNF-a. Melatonin at concentrations over 100 μm (10(-4) M) significantly attenuated MAdCAM-1 expression and was maximal at 1 mM. CONCLUSIONS: Our data indicate that melatonin may exert therapeutic activity in IBD through its ability to inhibit NF-kB dependent induction of MAdCAM-1

    Safety and Clinical Outcome of Thrombolysis in Ischaemic Stroke Using a Perfusion CT Mismatch between 3 and 6 Hours

    Get PDF
    It may be possible to thrombolyse ischaemic stroke (IS) patients up to 6 h by using penumbral imaging. We investigated whether a perfusion CT (CTP) mismatch can help to select patients for thrombolysis up to 6 h.A cohort of 254 thrombolysed IS patients was studied. 174 (69%) were thrombolysed at 0-3 h by using non-contrast CT (NCCT), and 80 (31%) at 3-6 h (35 at 3-4.5 h and 45 at 4.5-6 h) by using CTP mismatch criteria. Symptomatic intracerebral haemorrhage (SICH), the mortality and the modified Rankin Score (mRS) were assessed at 3 months. Independent determinants of outcome in patients thrombolysed between 3 and 6 h were identified.The baseline characteristics were comparable in the two groups. There were no differences in SICH (3% v 4%, p = 0.71), any ICH (7% v 9%, p = 0.61), or mortality (16% v 9%, p = 0.15) or mRS 0-2 at 3 months (55% v 54%, p = 0.96) between patients thrombolysed at 0-3 h (NCCT only) or at 3-6 h (CTP mismatch). There were no significant differences in outcome between patients thrombolysed at 3-4.5 h or 4.5-6 h. The NIHSS score was the only independent determinant of a mRS of 0-2 at 3 months (OR 0.89, 95% CI 0.82-0.97, p = 0.007) in patients treated using CTP mismatch criteria beyond 3 h.The use of a CTP mismatch model may help to guide thrombolysis decisions up to 6 h after IS onset

    A semi-automated method for counting fluorescent malaria oocysts increases the throughput of transmission blocking studies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Malaria transmission is now recognized as a key target for intervention. Evaluation of the <it>Plasmodium </it>oocyst burden in the midguts of <it>Anopheles spp</it>. is important for many of assays investigating transmission. However, current assays are very time-consuming, manually demanding and patently subject to observer-observer variation.</p> <p>Methods</p> <p>This report presents the development of a method to rapidly, accurately and consistently determine oocyst burdens on mosquito midguts using GFP-expressing <it>Plasmodium berghei </it>and a custom-written macro for ImageJ. The counting macro was optimized and found to be fit-for-purpose by performing gametocyte membrane feeds with parasite infected blood. Dissected midguts were counted both manually and using the automated macro, then compared. The optimized settings for the macro were then validated by using it to determine the transmission blocking efficacies of two anti-malarial compounds - dehydroepiandrosterone sulphate and lumefantrine, in comparison to manually determined analysis of the same experiment.</p> <p>Results</p> <p>Concurrence of manual and macro counts was very high (R<sup>2 </sup>= 0.973) and reproducible. Estimated transmission blocking efficacies between manual and automated analysis were highly concordant, indicating that dehydroepiandrosterone sulphate has little or no transmission blocking potential, whilst lumefantrine strongly inhibits sporogony.</p> <p>Conclusion</p> <p>Recognizing a potential five-fold increase in throughput, the resulting reduction in personnel costs, and the absence of inter-operator/laboratory variation possible with this approach, this counting macro may be a benefit to the malaria community.</p

    The yield of essential oils in Melaleuca alternifolia (Myrtaceae) is regulated through transcript abundance of genes in the MEP pathway

    Get PDF
    Medicinal tea tree (Melaleuca alternifolia) leaves contain large amounts of an essential oil, dominated by monoterpenes. Several enzymes of the chloroplastic methylerythritol phosphate (MEP) pathway are hypothesised to act as bottlenecks to the production of monoterpenes. We investigated, whether transcript abundance of genes encoding for enzymes of the MEP pathway were correlated with foliar terpenes in M. alternifolia using a population of 48 individuals that ranged in their oil concentration from 39 -122 mg x g DM(-1). Our study shows that most genes in the MEP pathway are co-regulated and that the expression of multiple genes within the MEP pathway is correlated with oil yield. Using multiple regression analysis, variation in expression of MEP pathway genes explained 87% of variation in foliar monoterpene concentrations. The data also suggest that sesquiterpenes in M. alternifolia are synthesised, at least in part, from isopentenyl pyrophosphate originating from the plastid via the MEP pathway

    IFN-γ-Inducible Irga6 Mediates Host Resistance against Chlamydia trachomatis via Autophagy

    Get PDF
    Chlamydial infection of the host cell induces Gamma interferon (IFNγ), a central immunoprotector for humans and mice. The primary defense against Chlamydia infection in the mouse involves the IFNγ-inducible family of IRG proteins; however, the precise mechanisms mediating the pathogen's elimination are unknown. In this study, we identify Irga6 as an important resistance factor against C. trachomatis, but not C. muridarum, infection in IFNγ-stimulated mouse embryonic fibroblasts (MEFs). We show that Irga6, Irgd, Irgm2 and Irgm3 accumulate at bacterial inclusions in MEFs upon stimulation with IFNγ, whereas Irgb6 colocalized in the presence or absence of the cytokine. This accumulation triggers a rerouting of bacterial inclusions to autophagosomes that subsequently fuse to lysosomes for elimination. Autophagy-deficient Atg5−/− MEFs and lysosomal acidification impaired cells surrender to infection. Irgm2, Irgm3 and Irgd still localize to inclusions in IFNγ-induced Atg5−/− cells, but Irga6 localization is disrupted indicating its pivotal role in pathogen resistance. Irga6-deficient (Irga6−/−) MEFs, in which chlamydial growth is enhanced, do not respond to IFNγ even though Irgb6, Irgd, Irgm2 and Irgm3 still localize to inclusions. Taken together, we identify Irga6 as a necessary factor in conferring host resistance by remodelling a classically nonfusogenic intracellular pathogen to stimulate fusion with autophagosomes, thereby rerouting the intruder to the lysosomal compartment for destruction
    corecore