2 research outputs found

    Does listening to the sound of yourself chewing increase your enjoyment of food?

    Get PDF
    BACKGROUND: Anecdotal evidence suggests that listening to oneself eating results in a more pleasurable eating experience. Maximising the sensory experience of eating can result in increased oral intake and is potentially valuable in improving nutritional status in at-risk patients. OBJECTIVE: This pilot study investigates the association between listening to the sound of oneself eating and the consequences on enjoyment of eating. DESIGN: Prospective, randomized, controlled, cross-over trial of 10 fit, adult volunteers. Participants were timed eating a standardised amount of bread, and were randomized to eat in silence or whilst listening to their own amplified chewing and swallowing. Measurements of pulse and blood pressure were recorded throughout the procedure. Subjective pleasure scores were documented and the procedure repeated in the alternate study arm. RESULTS: There was no significant relationship demonstrated between listening to oneself chewing and the enjoyment of eating. CONCLUSION: Although this small pilot study was unable to demonstrate a significant relationship between listening to oneself chewing and enjoyment of eating, other evidence suggests that distraction techniques have a beneficial effect on dietary intake. Such techniques can be applied in a clinical setting and further work in this area has valuable potential

    Campylobacter jejuni transcriptome changes during loss of culturability in water

    Get PDF
    Background: Water serves as a potential reservoir for Campylobacter, the leading cause of bacterial gastroenteritis in humans. However, little is understood about the mechanisms underlying variations in survival characteristics between different strains of C. jejuni in natural environments, including water. Results: We identified three Campylobacter jejuni strains that exhibited variability in their ability to retain culturability after suspension in tap water at two different temperatures (4°C and 25°C). Of the three strains C. jejuni M1 exhibited the most rapid loss of culturability whilst retaining viability. Using RNAseq transcriptomics, we characterised C. jejuni M1 gene expression in response to suspension in water by analyzing bacterial suspensions recovered immediately after introduction into water (Time 0), and from two sampling time/temperature combinations where considerable loss of culturability was evident, namely (i) after 24 h at 25°C, and (ii) after 72 h at 4°C. Transcript data were compared with a culture-grown control. Some gene expression characteristics were shared amongst the three populations recovered from water, with more genes being up-regulated than down. Many of the up-regulated genes were identified in the Time 0 sample, whereas the majority of down-regulated genes occurred in the 25°C (24 h) sample. Conclusions: Variations in expression were found amongst genes associated with oxygen tolerance, starvation and osmotic stress. However, we also found upregulation of flagellar assembly genes, accompanied by down-regulation of genes involved in chemotaxis. Our data also suggested a switch from secretion via the sec system to via the tat system, and that the quorum sensing gene luxS may be implicated in the survival of strain M1 in water. Variations in gene expression also occurred in accessory genome regions. Our data suggest that despite the loss of culturability, C. jejuni M1 remains viable and adapts via specific changes in gene expression
    corecore