9 research outputs found

    Random-Manifold to Random-Periodic Depinning of an Elastic Interface

    Full text link
    We study numerically the depinning transition of driven elastic interfaces in a random-periodic medium with localized periodic-correlation peaks in the direction of motion. The analysis of the moving interface geometry reveals the existence of several characteristic lengths separating different length-scale regimes of roughness. We determine the scaling behavior of these lengths as a function of the velocity, temperature, driving force, and transverse periodicity. A dynamical roughness diagram is thus obtained which contains, at small length scales, the critical and fast-flow regimes typical of the random-manifold (or domain wall) depinning, and at large length-scales, the critical and fast-flow regimes typical of the random-periodic (or charge-density wave) depinning. From the study of the equilibrium geometry we are also able to infer the roughness diagram in the creep regime, extending the depinning roughness diagram below threshold. Our results are relevant for understanding the geometry at depinning of arrays of elastically coupled thin manifolds in a disordered medium such as driven particle chains or vortex-line planar arrays. They also allow to properly control the effect of transverse periodic boundary conditions in large-scale simulations of driven disordered interfaces.Comment: 19 pages, 10 figure

    Thermal rounding exponent of the depinning transition of an elastic string in a random medium

    Get PDF
    We study numerically thermal effects at the depinning transition of an elastic string driven in a two-dimensional uncorrelated disorder potential. The velocity of the string exactly at the sample critical force is shown to behave as VTψV \sim T^\psi, with ψ\psi the thermal rounding exponent. We show that the computed value of the thermal rounding exponent, ψ=0.15\psi = 0.15, is robust and accounts for the different scaling properties of several observables both in the steady-state and in the transient relaxation to the steady-state. In particular, we show the compatibility of the thermal rounding exponent with the scaling properties of the steady-state structure factor, the universal short-time dynamics of the transient velocity at the sample critical force, and the velocity scaling function describing the joint dependence of the steady-state velocity on the external drive and temperature

    Thermal rounding of the depinning transition

    Full text link
    We study thermal effects at the depinning transition by numerical simulations of driven one-dimensional elastic interfaces in a disordered medium. We find that the velocity of the interface, evaluated at the critical depinning force, can be correctly described with the power law vTψv\sim T^\psi, where ψ\psi is the thermal exponent. Using the sample-dependent value of the critical force, we precisely evaluate the value of ψ\psi directly from the temperature dependence of the velocity, obtaining the value ψ=0.15±0.01\psi = 0.15 \pm 0.01. By measuring the structure factor of the interface we show that both the thermally-rounded and the T=0 depinning, display the same large-scale geometry, described by an identical divergence of a characteristic length with the velocity ξvν/β\xi \propto v^{-\nu/\beta}, where ν\nu and β\beta are respectively the T=0 correlation and depinning exponents. We discuss the comparison of our results with previous estimates of the thermal exponent and the direct consequences for recent experiments on magnetic domain wall motion in ferromagnetic thin films.Comment: 6 pages, 3 figure

    Thermal rounding of the depinning transition in ultrathin Pt/Co/Pt films

    Full text link
    We perform a scaling analysis of the mean velocity of extended magnetic domain walls driven in ultrathin Pt/Co/Pt ferromagnetic films with perpendicular anisotropy, as a function of the applied external field for different film-thicknesses. We find that the scaling of the experimental data around the thermally rounded depinning transition is consistent with the universal depinning exponents theoretically expected for elastic interfaces described by the one-dimensional quenched Edwards-Wilkinson equation. In particular, values for the depinning exponent β\beta and thermal rounding exponent ψ\psi are tested and the present analysis of the experimental data is compatible with β=0.33\beta=0.33 and ψ=0.2\psi=0.2, in agreement with numerical simulations.Comment: 8 pages, 8 figure

    Pinning dependent field driven domain wall dynamics and thermal scaling in an ultrathin Pt/Co/Pt magnetic film

    Get PDF
    Magnetic field-driven domain wall motion in an ultrathin Pt/Co(0.45nm)/Pt ferromagnetic film with perpendicular anisotropy is studied over a wide temperature range. Three different pinning dependent dynamical regimes are clearly identified: the creep, the thermally assisted flux flow and the depinning, as well as their corresponding crossovers. The wall elastic energy and microscopic parameters characterizing the pinning are determined. Both the extracted thermal rounding exponent at the depinning transition, ψ=\psi=0.15, and the Larkin length crossover exponent, ϕ=\phi=0.24, fit well with the numerical predictions.Comment: 5 pages, 4 figure

    Maximum relative height of elastic interfaces in random media

    Full text link
    The distribution of the maximal relative height (MRH) of self-affine one-dimensional elastic interfaces in a random potential is studied. We analyze the ground state configuration at zero driving force, and the critical configuration exactly at the depinning threshold, both for the random-manifold and random-periodic universality classes. These configurations are sampled by exact numerical methods, and their MRH distributions are compared with those with the same roughness exponent and boundary conditions, but produced by independent Fourier modes with normally distributed amplitudes. Using Pickands' theorem we derive an exact analytical description for the right tail of the latter. After properly rescaling the MRH distributions we find that corrections from the Gaussian independent modes approximation are in general small, as previously found for the average width distribution of depinning configurations. In the large size limit all corrections are finite except for the ground-state in the random-periodic class whose MRH distribution becomes, for periodic boundary conditions, indistinguishable from the Airy distribution. We find that the MRH distributions are, in general, sensitive to changes of boundary conditions.Comment: 14 pages, 10 figure
    corecore