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Magnetic-field-driven domain wall motion in an ultrathin Pt=Coð0.45 nmÞ=Pt ferromagnetic film with
perpendicular anisotropy is studied over a wide temperature range. Three different pinning dependent
dynamical regimes are clearly identified: the creep, the thermally assisted flux flow, and the depinning, as
well as their corresponding crossovers. The wall elastic energy and microscopic parameters characterizing
the pinning are determined. Both the extracted thermal rounding exponent at the depinning transition,
ψ ¼ 0.15, and the Larkin length crossover exponent, ϕ ¼ 0.24, fit well with the numerical predictions.
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Many areas in physics [1–8] such as magnetic and
ferroelectric domain-wall motion, contact lines in wetting,
crack propagation, vortex lines motion in type-II super-
conductors, etc., involve the displacement of elastic object
or interface in a weakly disordered medium. How the
velocity of motion depends on the driving force f poses
important fundamental questions [1,2,5,6]. In the absence
of disorder or for a large f, motion is limited by dissipation
and the interface moves in a flow regime, with a velocity
essentially proportional to f. However in real materials
the presence of disorder leads to pinning which dramati-
cally modifies the response to the force. At zero temper-
ature this leads to the existence of a depinning force
fdep, below which no motion takes place. At finite temper-
ature T the combination of the applied force, collective
pinning, and thermal effects leads to an extremely rich
dynamical behavior, which has been the focuss of
many theoretical [1,2,5,6,9] and experimental studies
[10–16].
On the experimental front the controlled investigation of

this dynamics is very difficult and Pt=Co=Pt ultrathin
ferromagnetic films with perpendicular anisotropy proved
to be an archetypal 2D-disordered system to test theory
[10,13,16–19]. In this system the force f is the applied field
H, and domain walls (DWs) mimic elastic interfaces.
Measurements as a function of the field, allow us to
unambiguously evidence the highly nonlinear response
ln vðHÞ ∼H−μ expected at small fields, the so called creep
regime [10,16,17]. They confirm the predicted value
μ ¼ 1=4 of the exponent and its relation with the exponent
associated to the roughness of the interface at equilibrium
[1,4,7,10]. Measurements as a function of the temperature
[20,21] for small fields, confirm the role played by thermal
activation over barriers by obtaining a prefactor in the
exponential varying as 1=T.

At larger fields, and in particular close to the depinning
transition, the situation, both theoretically and experimen-
tally, is much less clear. At the depinning field Hdep the
response was predicted to follow a power law behavior,
vðHdepÞ ∼ Tψ , where ψ is the thermal rounding exponent
[5]. This behavior was checked indirectly [22] in experi-
ments with a constant T but with Pt=Co=Pt layers of
different anisotropy. However, a true temperature depen-
dent analysis close to depinning is still lacking, as well as
bridging the gap between the very low field creep regime
H ≪ Hdep and the depinning one H ∼Hdep. For this,
experiments with a full range of magnetic fields and
various temperature is necessary.
In this Letter, we perform such a study by exploring in a

single Pt=Co=Pt ultrathin layer the DW dynamics between
50 and 300 K. We evidence three distinct pinning depen-
dent regimes and determine the corresponding crossover
fields. We provide a consistent theoretical description of the
full dynamical range, allowing us in addition, through the
testing of the predicted universal scalings, to obtain
accurately the (nonuniversal) microscopic quantities con-
trolling DW dynamics.
The experimental results were obtained with a sputter-

grown ultrathin Ptð3.5 nmÞ=Coð0.45 nmÞ=Ptð4.5 nmÞ film
deposited on an etched Si=SiO2 substrate [16]. The Curie
temperature (TC ¼ 375 K), square perpendicular hysteresis
loop, thermal dependence of the saturated magnetization—
compatible with that predicted for an anisotropic 2D-
ferromagnet—and of the anisotropy field, were determined
from magnetooptical Kerr magnetometry and microscopy
measurements [23]. The film was cooled in an open cycle
optical cryostat and its temperature was measured with an
accuracy of �2 K. The DW motion was produced by field
pulses and visualized by Kerr microscopy with a resolution
of ∼1 μm. The DW velocity, vðHÞ, was deduced from the
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growth in diameter of magnetically reversed bubbles
(Fig. 1, inset). The field pulses (0 < H < 1600 Oe) were
produced by a 60-turn small coil (0.16 μs rise time)
positioned very close to the film surface [23]. For each
pulse amplitude and duration (from 0.5 μs to 100 μs), the
DW displacements were analyzed in order to select only
steady DW motion.
The DW velocity vðHÞ curves are depicted in Fig. 1, for

temperatures ranging between 50 and 300 K. The main
parameters controlling DW motion are reported in Table I.
As it can be observed, lowering the temperature results in a
shift towards the high-field region of the curves. Different
dynamical regimes when raising the applied magnetic field
H are indicated in Fig. 1 on the highest temperature (300 K)
curve. Their precise identification is not straightforward
and will be discussed in detail below. The high-field vðHÞ

response is supposed to finally reach the asymptotic flow
regime with a mobility m ¼ v=H (as shown in Fig. 1) [16].
Unfortunately, the determination of v for H > 1700 Oe
was not possible due to the increase of the nucleation rate of
magnetization reversal [23]. The value of m (reported in
Table I) is then determined from the expected power law
expression [24], m − ðv=HÞ ¼ DH−c with c ¼ 4. A small
increase of m is revealed when lowering the temper-
ature [23].
Let us now identify the low field regimes in detail. Two

different behaviors for the velocity can be clearly seen in
Fig. 2. At lower fields ln v exhibits a linear variation with
H−1=4 and this part can be identified with the creep regime,
in which the barriers diverge for H → 0 [1,25,26]. In this
regime, the DW velocity can be written

vcreepðH; TÞ ¼ v0creepðTÞe−ðTdep=TÞðHdep=HÞμ ; ð1Þ

where v0creep corresponds to a velocity prefactor whose
meaning is discussed later, and Tdep is the depinning
temperature which is defined below. As observed in
Fig. 2(a), the creep law is no longer fulfilled at high
(low) H values (H−1=4-values) and a new regime of
transport can be identified above the field HC-T (creep),
given in Table I and which corresponds to the upper
boundary of the creep regime.
For H ≥ HC-T (creep), ln v varies linearly with H, as

shown in Fig. 2(b). The experiment thus reveals a regime in
which the barriers decrease linearly as the field is increased
and the velocity obeys

vTAFFðH; TÞ ¼ v0TAFFðTÞe−ðTdep=TÞ½1−ðH=HdepÞ�; ð2Þ

where v0TAFFðTÞ is the velocity at H ¼ Hdep. This regime
can be identified with the so-called thermally assisted flux
flow (TAFF) regime [27] initially proposed in the context of
vortex motion and is compatible with the computed
behavior in a T ¼ 0þ dynamics [6]. As shown in
Fig. 2(b), the limits of the TAFF regime (ln v ∼H) permit
us to obtain HC-TðTAFFÞ and the depinning threshold,
HdepðTAFFÞ, reported in Table I. More strictly, the end of

FIG. 1 (color online). Variation of the domain wall velocity in
the Pt=Coð0.45 nmÞ=Pt film with H for different temperatures.
The big black filled and half-filled symbols correspond to
boundaries between the creep and TAFF regimes, HC-T , and
TAFF and depinning regimes,Hdep, respectively. The straight line
represents the predicted asymptotic high-field flow limit at 300 K
for m ¼ 0.085 m=s Oe. Inset: Domain wall displacement (in
black) from a nucleus (in red) produced by a 1 μs field pulse
of amplitude H ¼ 865 Oe, at 150 K.

TABLE I. Parameters controlling DW dynamics at different temperatures.Ms is the magnetization saturation and m the DW mobility
in the flow regime [23]. Between the field boundariesHC-T andHdep, DWs follow a thermally assisted flux flow (TAFF) regime. The two
sets of HC-T and Hdep values were determined by independent methods (see text) and are consistent together. The Tdep value was
deduced from the creep regime data.

T (K) 300 200 150 100 50

Ms (erg=Gcm3) 800(40) 1120(50) 1260(60) 1370(70) 1470(80)
m (m=s Oe) 0.085(0.04) 0.083(0.05) 0.091(0.05) 0.089(0.06) 0.102(0.07)
HC-T (creep) (Oe) 480(20) 720(30) 870(40) 1080(40) 1170(40)
HC-T (TAFF) (Oe) 470(20) 730(30) 890(40) 1070(40) 1190(40)
Hdep (TAFF) (Oe) 920(30) 1060(50) 1360(30) 1480(50) 1500(40)
Hdep (depin.) (Oe) 900(40) 1190(40) 1335(50) 1360(50) 1470(50)
Tdep (K) 1880(110) 2500(150) 2700(160) 3200(190) 3500(210)
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the TAFF regime corresponds to the field
(H ∼Hdepð1 − T=TdepÞ < Hdep) at which the barrier is of
the order of the temperature, and at small temperature this
field is expected to approach Hdep.
Beyond Hdep the system enters in the depinning regime

for which the velocity is expected to follow the universal
scaling form [5,24,28–30]:

vdepðH; TÞ ¼ v0depðTÞG
�
H −Hdep

Hdep

�
T

Tdep

�
−ψ=β

�
ð3Þ

where GðxÞ is a universal function such that GðxÞ ∼ xβ for
x ≫ 1, i.e., T ≪ Tdep, with β the depinning exponent, and
v0dep ¼ vdepðH ¼ Hdep; TÞ ¼ mHdepðT=TdepÞψ , with ψ the
thermal rounding exponent. Thus, the velocity scaling in
the depinning regime provides an alternative for estimating
Hdep [23], according to the procedure proposed in
Ref. [22], by considering that the DW velocity fits a v ∼
ðH −HdepÞβ law, where β ¼ 0.25 [31]. This procedure
leads to Hdepðdepin:Þ in Table I. Knowing Hdep, the values
for Tdep reported in Table I were deduced from the creep
plot slope, TdepH

1=4
dep=T. Note that the different estimation

methods lead to consistent values for HC-T and Hdep, with
HC-T ¼ 0.5–0.8 Hdep, as shown in Table I.
The theoretical analysis of the data thus provides a

consistent picture of all the regimes. Their matching allows
us to extract additional results. We in particular analyze the
temperature variation of the creep velocity prefactor v0creep
[cf. Eq. (1)], shown in the inset of Fig. 2(a). The values of
ln v0creep are deduced from the extrapolation toH−1=4 ¼ 0 of
the creep plot of Fig. 2(a). Empirically, the velocity v0creep is
found to fit well with an exponential variation
v0creep ¼ v00creep expðCTdep=TÞ, over the explored temper-
ature range T=Tdep ¼ 0.014 to 0.160. The best fit gives
C ¼ 1.04� 0.02 and v00creep ¼ 35� 15m=s. This strongly

suggests that the velocity v00creep must be written as
v00creep ¼ ξ=τ, where ξ is the disorder correlation length,
and 1=τ the attempt frequency at passing barriers. Note that
such a temperature dependent prefactor simply corre-
sponds, in the creep regime, to a subdominant correction
of the barrier. Extracting the explicit temperature depend-
ence allows us to obtain the microscopic attempt frequency.
Since ξ ≈ 19 nm (to be discussed below), one obtains a
reasonable time scale of τ ≈ 1 ns. Using this exponential
behavior of v0creep and matching the creep and TAFF
velocities at the crossover field HC-T , a value of C ¼
0.66� 0.08 can be obtained, which is of the same order of
magnitude and almost temperature independent, as the
previously extracted C value.
The crossover between the TAFF and depinning is also

consistent with the expected thermal rounding of the
velocity in the depinning regime. Matching the TAFF
and the depinning regime at Hdep, the prefactor in
Eq. (2) should be v0TAFF ¼ vdepðH ¼ Hdep; TÞ, allowing
us to use the velocity corresponding to the upper bound of
the TAFF regime to extract the thermal rounding exponent
ψ . As shown in Fig. 3, the values are consistent with the
prediction (ψ ¼ 0.15) of numerical simulations based on
the quenched-Edwards-Wilkinson equation describing the
overdamped motion of an elastic interface in a weak
quenched disorder [5].
In order to complete this analysis of universal exponents

(i.e., the universality class) we now determine the nonuni-
versal (intrinsic) characteristic length and energy scales
controlling the pinning and their temperature dependence.
The free energy, FðL; uÞ, of a DW segment of length L,
displaced over a distance u under the action of the magnetic
field writes as

FðL; uÞ ¼ ϵelu2=L − ϵpinu
ffiffiffiffiffiffiffiffiffiffiffi
niΔL

p
−MsHtLu; ð4Þ

(a) (b)

FIG. 2 (color online). Field-dependent domain wall velocity.
(a) Plot of ln v vs H−1=4 to evidence the creep regime and its
upper boundary HC-T (creep). Inset: creep prefactor v0creep
deduced from an extrapolation of the creep law (straight line)
to H−1=4 ¼ 0. (b) Plot of ln v vs H reveals the TAFF regime and
its two boundaries HC-T (TAFF) and Hdep (TAFF).

FIG. 3 (color online). (a) ψ as a function of T calculated
from the crossover at H ¼ Hdep between the TAFF and
thermal rounding regimes, v0TAFF=ðmHdepÞ ¼ ðT=TdepÞψ . (b)
Universal scaling plot of the depinning transition using
ψ ¼ 0.15, β ¼ 0.25 and the parameters of Table I. With the
reduced coordinates x ¼ ½ðH −HdepÞ=Hdep�ðT=TdepÞ−ψ=β and
y ¼ ½v=ðmHdepÞ�ðT=TdepÞ−ψ , the velocity curves (cf. Fig. 1)
are superimposed in the vicinity of the depinning transition
(x ¼ 0), as expected from Eq. (3).
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where ni is the density of pinning centers assumed to be
equal to 1=ξ2. Ms is the measured magnetization at
saturation (Table I), t ¼ 0.45 nm the Co layer thickness,
and Δ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A=Keff

p
the DW thickness parameter. The first

term in Eq. (4) represents the elastic energy of the wall, Fel,
the second is the pinning energy, Fpin, while the third term
stands for the Zeeman contribution, FH. From this free
energy we can derive expressions for the fundamental
energy and length scales. In particular, the Larkin length,
i.e., the length scale below which elasticity dominates over
disorder, has direct experimental relevance [13]. The Larkin
length, Lc, which is supposed to be larger than ξ, and the
depinning field, Hdep, can be defined from the equalities
FelðLc; ξÞ ¼ FpinðLc; ξÞ and FelðLc; ξÞ ¼ FHðLc; ξÞ.
Assuming that kBTdep ¼ FpinðLc; ξÞð¼ ϵpin

ffiffiffiffiffiffiffiffiffi
ΔLc

p Þ, the
following expressions hold:

ϵel ¼ ðkBTdepÞ2=ðMsHdeptÞξ3; ð5Þ

ϵ2pin ¼ ½ðkBTdepÞðMsHdeptÞξ�=Δ; ð6Þ

Lc ¼ ðkBTdepÞ=½ðMsHdeptÞξ�: ð7Þ

The DW elastic energy density is expressed as
ϵel ¼ 4t

ffiffiffiffiffiffiffiffiffiffiffi
AKeff

p
. The estimated values of the exchange

stiffness A and the effective anisotropy Keff for the
t ¼ 0.45 nm thick film were deduced from data obtained
with thicker films [23]. For T ¼ 300 K, we get A ¼
1.25 μerg=cm, an anisotropy field HA

eff ¼ 5.3� 0.3 kOe,
and Keff ¼ ðHA

effMsÞ=2 ¼ 2.1� 0.3 Merg=cm3, which
leads to ϵel ¼ 0.29� 0.04 μerg=cm. Starting from
Eq. (5), and accounting for the values of Hdep and Tdep,
reported in Table I, we estimate ξ ¼ 19.3 nm. This value
agrees well with the mean lateral size of Pt crystallites
(∼10–20 nm) determined by AFM [32] in such a Pt=Co=Pt
film supposing a morphological continuity between Pt and
Co layers. Therefore, we assume that ξ is temperature
independent in the following analysis. We can then estimate
the temperature dependence of ϵel, ϵpin, Δ, and Lc. HA

effðTÞ
is found to be nearly constant over the 50–300 K temper-
ature range, which means that KeffðTÞ ∼MsðTÞ. For AðTÞ,
we assumed a temperature variation ∼MsðTÞ2. As a result,
ϵel varies as MsðTÞ3=2 and Δ as MsðTÞ1=2. This more
pronounced temperature variation for ϵel than for Δ is
compatible with the results reported in Figs. 4(a) and 4(b).
As expected, Δ decreases when raising the temperature
consistently with the found thermal variation of the flow
mobility m (Table I). Alternatively, ϵelðTÞ was deduced
from Eq. (5), using the values ofMs,Hdep and Tdep reported
in Table I. As shown in Fig. 4, ϵel decreases as the
temperature increases. The variation is, however, weaker
than expected, probably because of the crude assumption:
Δ ≪ ξ, while both values (7.7 nm and 19.3 nm, respec-
tively) are quite close. The density of pinning energy ϵpin is

deduced from Eq. (6). Figure 4 shows that ϵpin exhibits a
weaker temperature variation than ϵel.
Finally, the temperature dependence of the Larkin

length, Lc, is calculated from Eq. (7) and the results shown
in Fig. 4(b). LcðTÞ can be recast in the form [33–35]

LcðTÞ ¼ L0
c½1þ ðT=TdepÞ�1=ϕ; ð8Þ

where L0
c ¼ LcðT ¼ 0 KÞ and ϕ is the thermal crossover

exponent of the Larkin length. Fitting LcðTÞ with Eq. (8)
[see the inset of Fig. 4(b)] leads to L0

c ¼ 25� 2 nm and
ϕ ¼ 0.24� 0.05. This last value agrees with the most
recent prediction, ϕ ¼ 1=5 [33–35].
In conclusion, our consistent analysis of the thermal

dependence of the field-driven DW motion would be
valuably extended to pinning mechanism studies in other
systems.
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