2 research outputs found

    An Integrated Approach for Dynamic Charging of Electric Vehicles by Wireless Power Transfer - Lessons Learned from Real-Life Implementation

    Get PDF
    The aim of this paper is to introduce a complete fast dynamic inductive charging infrastructure from the back-office system (EV management system) up to the Electric Vehicle (EV) (inductive power transfer module, positioning mechanism, electric vehicle modifications) and the EV user (User interface). Moreover, in order to assess the impact of the additional demand of inductive charging on the grid operation, an estimation of the 24-hour power profile of dynamic inductive charging is presented considering, apart from the road traffic, the probability of the need for fast charging, as well as the specifications of the proposed solution. In addition, an energy management system is presented enabling the management of the operation of the inductive charging infrastructure, the interaction with the EV users and the provision of demand response services to different stakeholders. The proposed dynamic inductive charging approach has been demonstrated within a real urban environment in order to provide useful insights regarding the experience gained from a real-field trial. The relevant practical conclusions are also discussed in this paper. Finally, a cost/benefit analysis, according to the Discounted Cash Flow (DCF) principles, is performed in order to assess the economic viability of the proposed solution.This work was supported by the European Commission within the 7th Framework Programme, Project FastInCharge under the Grant Agreement: 31428

    Sensitivity Analysis of Tool Wear in Drilling of Titanium Aluminides

    Get PDF
    In the aerospace industry, a large number of holes need to be drilled to mechanically connect the components of aircraft engines. The working conditions for such components demand a good response of their mechanical properties at high temperatures. The new gamma TiAl are in the transition between the 2nd and 3rd generation, and several applications are proposed for that sector. Thus, NASA is proposing the use of the alloys in the Revolutionary Turbine Accelerator/Turbine-Based Combined Cycle (RTA/TBCC) Program for the next-generation launch vehicle, with gamma TiAl as a potential compressor and structural material. However, the information and datasets available regarding cutting performance in titanium aluminides are relatively scarce. So, a considerable part of the current research efforts in this field is dedicated to process optimization of cutting parameters and tool geometries. The present work is framed in the study of wear when machining holes in these difficult-to-cut alloys. In particular, the work presents the results from drilling tests on three types of gamma TiAl alloys, extruded MoCuSi, ingot MoCuSi, and TNB type, to define an optimal set of cutting parameters. Maintaining uniform, gradual wear is key to avoiding tool breakage and enabling good hole dimensional accuracy. So, this paper proposes a model based on ANOVA analysis to identify the relationships between cutting conditions and resulting wear and estimate tool life. The best cutting parameters were found at v(c) = 10-15 m/min and f(n) = 0.025 mm/rev.Thanks are addressed to the UFI in Mechanical Engineering of the UPV/EHU for its support to this project, and to Spanish project DPI2016-74845-R, ESTRATEGIAS AVANZADAS DE DEFINICION DE FRESADO EN PIEZAS ROTATIVAS INTEGRALES, CON ASEGURAMIENTO DE REQUISITO DE FIABILIDAD Y PRODUCTIVIDAD and project RTC-2014-1861-4, INNPACTO DESAFIO II
    corecore