2,572 research outputs found

    Thermodynamics of a Colloidal Particle in a Time-Dependent Non-Harmonic Potential

    Full text link
    We study the motion of an overdamped colloidal particle in a time-dependent non-harmonic potential. We demonstrate the first law-like balance between applied work, exchanged heat, and internal energy on the level of a single trajectory. The observed distribution of applied work is distinctly non-Gaussian in good agreement with numerical calculations. Both the Jarzynski relation and a detailed fluctuation theorem are verified with good accuracy

    A numerical approach to large deviations in continuous-time

    Full text link
    We present an algorithm to evaluate the large deviation functions associated to history-dependent observables. Instead of relying on a time discretisation procedure to approximate the dynamics, we provide a direct continuous-time algorithm, valuable for systems with multiple time scales, thus extending the work of Giardin\`a, Kurchan and Peliti (PRL 96, 120603 (2006)). The procedure is supplemented with a thermodynamic-integration scheme, which improves its efficiency. We also show how the method can be used to probe large deviation functions in systems with a dynamical phase transition -- revealed in our context through the appearance of a non-analyticity in the large deviation functions.Comment: Submitted to J. Stat. Mec

    Stability in chromosome number and DNA content in synthetic tetraploids of Lolium multiflorum after two generations of selection.

    Get PDF
    Chromosome doubling of Italian ryegrass genotypes ( Lolium multiflorum Lam.) adapted to the brazilian edaphoclimatic conditions is an important strategy used by breeders and aims to obtain more vigorous genotypes with better forage quality and disease resistance. The effectiveness of chromosome doubling can be measured by genetic stability and fertility rates of plants over generations. However, a common problem in the polyploidization process is the regeneration of mixoploid plants that have impaired fertility and genetic stability. The objective of this study was to verify if progenies of recently tetraploidized plants remain stable regarding DNA content and chromosome number, over two generations. Progenies of L. multiflorum plants artificially tetraploidized with colchicine treatment were evaluated. Chromosome counting and estimates of the DNA content were used to evaluate the genetic stability. The percentage of tetraploid plants (4X) increased over generations (18%, 34% and 91% in cycle 0, 1 and 2, respectively). All progenies identified as tetraploid by flow citometry showed variation in chromosome number (mixoploidy), but produced viable seeds. Results showed that stabilization in chromosome number and DNA content in tetraploidized plant progenies requires time and that the success of this procedure depends on a continuous and accurate screening and selection

    Dynamics of 45S rDNA sites in the cell cycle: fragile sites and chromosomal stability in Lolium and Festuca.

    Get PDF
    Abstract Analyses carried out with fluorescence in situ hybridization (FISH) in C-metaphases of the Lolium-Festuca complex have shown the occurrence of spontaneous fragile sites (FSs) in 45S rDNA regions. FSs are expressed as gaps but they do not result in breaks or chromosomal fragments in these species. These gaps have high DNA condensation observed as thin chromatin fibers that connect the apparent segments of the fragile chromosome, allowing for genomic stability. Assessing the behavior of these regions in the cell cycle of Lolium and Festuca species may lead to a better understanding of the dynamics that preserve stability during cell division. Furthermore, it is interesting to track the dynamics of chromosomes bearing 45S rDNA sites in the cell cycle as well as to observe the expression of FSs with no effect of the mitotic block. We observed variation in both the number and size of 45S FISH signals from the S/G2 phases of interphase and from prophase to anaphase where gaps in 45S rDNA sites also were observed. The change in the degree of condensation of the 45S site begins in the S/G2 phase and appears to be related to the transcriptional demand. Taking into account that the number of 45S rDNA sites tends to be re-established when cells reach telophase, we suggest that the chromatin fiber goes back to the normal condensation level to the anaphase (after segregation), allowing for the approximation of chromosome segments and ensuring dynamics that favor the genomic stability of these species

    Stochastic Physics, Complex Systems and Biology

    Full text link
    In complex systems, the interplay between nonlinear and stochastic dynamics, e.g., J. Monod's necessity and chance, gives rise to an evolutionary process in Darwinian sense, in terms of discrete jumps among attractors, with punctuated equilibrium, spontaneous random "mutations" and "adaptations". On an evlutionary time scale it produces sustainable diversity among individuals in a homogeneous population rather than convergence as usually predicted by a deterministic dynamics. The emergent discrete states in such a system, i.e., attractors, have natural robustness against both internal and external perturbations. Phenotypic states of a biological cell, a mesoscopic nonlinear stochastic open biochemical system, could be understood through such a perspective.Comment: 10 page

    Elasticity model of a supercoiled DNA molecule

    Full text link
    Within a simple elastic theory, we study the elongation versus force characteristics of a supercoiled DNA molecule at thermal equilibrium in the regime of small supercoiling. The partition function is mapped to the path integral representation for a quantum charged particle in the field of a magnetic monopole with unquantized charge. We show that the theory is singular in the continuum limit and must be regularised at an intermediate length scale. We find good agreement with existing experimental data, and point out how to measure the twist rigidity accurately.Comment: Latex, 4 pages. The figure contains new experimental data, giving a new determination of the twist rigidit

    Origin of chemically distinct discs in the Auriga cosmological simulations

    Get PDF
    The stellar disc of the Milky Way shows complex spatial and abundance structure that is central to understanding the key physical mechanisms responsible for shaping our Galaxy. In this study, we use six very high resolution cosmological zoom-in simulations of Milky Way-sized haloes to study the prevalence and formation of chemically distinct disc components. We find that our simulations develop a clearly bimodal distribution in the [α/Fe]–[Fe/H] plane. We find two main pathways to creating this dichotomy, which operate in different regions of the galaxies: (a) an early (z > 1) and intense high-[α/Fe] star formation phase in the inner region (R ≲ 5 kpc) induced by gas-rich mergers, followed by more quiescent low-[α/Fe] star formation; and (b) an early phase of high-[α/Fe] star formation in the outer disc followed by a shrinking of the gas disc owing to a temporarily lowered gas accretion rate, after which disc growth resumes. In process (b), a double-peaked star formation history around the time and radius of disc shrinking accentuates the dichotomy. If the early star formation phase is prolonged (rather than short and intense), chemical evolution proceeds as per process (a) in the inner region, but the dichotomy is less clear. In the outer region, the dichotomy is only evident if the first intense phase of star formation covers a large enough radial range before disc shrinking occurs; otherwise, the outer disc consists of only low-[α/Fe] sequence stars. We discuss the implication that both processes occurred in the Milky Way
    • …
    corecore