382 research outputs found

    Asparagine Synthetase in Cancer: Beyond Acute Lymphoblastic Leukemia

    Get PDF
    Asparagine Synthetase (ASNS) catalyzes the synthesis of the non-essential amino acid asparagine (Asn) from aspartate (Asp) and glutamine (Gln). ASNS expression is highly regulated at the transcriptional level, being induced by both the Amino Acid Response (AAR) and the Unfolded Protein Response (UPR) pathways. Lack of ASNS protein expression is a hallmark of Acute Lymphoblastic Leukemia (ALL) blasts, which, therefore, are auxotrophic for Asn. This peculiarity is the rationale for the use of bacterial L-Asparaginase (ASNase) for ALL therapy, the first example of anti-cancer treatment targeting a tumor-specific metabolic feature. Other hematological and solid cancers express low levels of ASNS and, therefore, should also be Asn auxotrophs and ASNase sensitive. Conversely, in the last few years, several reports indicate that in some cancer types ASNS is overexpressed, promoting cell proliferation, chemoresistance, and a metastatic behavior. However, enhanced ASNS activity may constitute a metabolic vulnerability in selected cancer models, suggesting a variable and tumor-specific role of the enzyme in cancer. Recent evidence indicates that, beyond its canonical role in protein synthesis, Asn may have additional regulatory functions. These observations prompt a re-appreciation of ASNS activity in the biology of normal and cancer tissues, with particular attention to the fueling of Asn exchange between cancer cells and the tumor microenvironment

    Preparation of human primary macrophages to study the polarization from monocyte-derived macrophages to pro- or anti-inflammatory macrophages at biomaterial interface in vitro

    Get PDF
    Background/purpose: Testing of dental materials when in contact with innate immune cells has been so far hindered by the lack of proper in vitro models. Human primary monocyte-derived macrophages (MDMs) would be an excellent option to this aim. However, the inability to detach them from the tissue culture plates contrast the possibility to culture them on biomaterials. The goal of the present work is to present and validate an innovative protocol to obtain MDMs from peripheral blood monocytes, and to reseed them in contact with biomaterials without altering their viability and phenotype. Materials and methods: We differentiated MDMs on ultra-low attachment tissue culture plastics and recovered them with specific detachment solution in order to be reseeded on a secondary substrate. Therefore, using biological assays (RT-PCR, Western blot, and immunofluorescence) we compared their phenotype to MDMs differentiated on standard culture plates. Results: Transferred MDMs keep their differentiated M0 resting state, as well as the ability to be polarized into M1 (pro-inflammatory) or M2 (anti-inflammatory) macrophages. Conclusion: These data provide the dental material research community the unprecedented possibility to investigate the immunomodulatory properties of biomaterials for dental application

    [18F](2S,4R)-4-Fluoroglutamine as a New Positron Emission Tomography Tracer in Myeloma

    Get PDF
    The high glycolytic activity of multiple myeloma (MM) cells is the rationale for use of Positron Emission Tomography (PET) with 18F-fluorodeoxyglucose ([18F]FDG) to detect both bone marrow (BM) and extramedullary disease. However, new tracers are actively searched because [18F]FDG-PET has some limitations and there is a portion of MM patients who are negative. Glutamine (Gln) addiction has been recently described as a typical metabolic feature of MM cells. Yet, the possible exploitation of Gln as a PET tracer in MM has never been assessed so far and is investigated in this study in preclinical models. Firstly, we have synthesized enantiopure (2S,4R)-4-fluoroglutamine (4-FGln) and validated it as a Gln transport analogue in human MM cell lines, comparing its uptake with that of 3H-labelled Gln. We then radiosynthesized [18F]4-FGln, tested its uptake in two different in vivo murine MM models, and checked the effect of Bortezomib, a proteasome inhibitor currently used in the treatment of MM. Both [18F]4-FGln and [18F]FDG clearly identified the spleen as site of MM cell colonization in C57BL/6 mice, challenged with syngeneic Vk12598 cells and assessed by PET. NOD.SCID mice, subcutaneously injected with human MM JJN3 cells, showed high values of both [18F]4-FGln and [18F]FDG uptake. Bortezomib significantly reduced the uptake of both radiopharmaceuticals in comparison with vehicle at post treatment PET. However, a reduction of glutaminolytic, but not of glycolytic, tumor volume was evident in mice showing the highest response to Bortezomib. Our data indicate that [18F](2S,4R)-4-FGln is a new PET tracer in preclinical MM models, yielding a rationale to design studies in MM patients

    ALL blasts drive primary mesenchymal stromal cells to increase asparagine availability during asparaginase treatment

    Get PDF
    Mechanisms underlying the resistance of acute lymphoblastic leukemia (ALL) blasts to L-asparaginase are still incompletely known. Here we demonstrate that human primary bone marrow mesenchymal stromal cells (MSCs) successfully adapt to L-asparaginase and markedly protect leukemic blasts from the enzyme-dependent cytotoxicity through an amino acid tradeoff. ALL blasts synthesize and secrete glutamine, thus increasing extracellular glutamine availability for stromal cells. In turn, MSCs use glutamine, either synthesized through glutamine synthetase (GS) or imported, to produce asparagine, which is then extruded to sustain asparagine-auxotroph leukemic cells. GS inhibition prevents mesenchymal cells adaptation to L-asparaginase, lowers glutamine secretion by ALL blasts, and markedly hinders the protection exerted by MSCs on leukemic cells. The pro-survival amino acid exchange is hindered by the inhibition or silencing of the asparagine efflux transporter SNAT5, which is induced in mesenchymal cells by ALL blasts. Consistently, primary MSCs from ALL patients express higher levels of SNAT5 (P <.05), secrete more asparagine (P <.05), and protect leukemic blasts (P <.05) better than MSCs isolated from healthy donors. In conclusion, ALL blasts arrange a pro-leukemic amino acid trade-off with bone marrow mesenchymal cells, which depends on GS and SNAT5 and promotes leukemic cell survival during L-asparaginase treatment

    Taxonomic and metabolic development of the human gut microbiome across life stages: a worldwide metagenomic investigation

    Get PDF
    The human gut microbiota is a dynamic community of microorganisms that undergo variable changes over the entire life span. To thoroughly investigate the possible fluctuations of the microbiota throughout human life, we performed a pooled analysis of healthy fecal samples across different age groups covering the entire human life span. Our study integrated data from 79 publicly available studies and new stool samples from an Italian cohort, i.e., the Parma Microbiota project, resulting in 6,653 samples processed through the shotgun metagenomic approach. This approach has allowed species-level taxonomic reconstruction of the gut microbiota and investigation of its metabolic potential across the human life span. From a taxonomic point of view, our findings confirmed and detailed at species-level accuracy that the microbial richness of the gut microbiota gradually increases in the first stage of life, becoming relatively stable during adolescence. Moreover, the analysis identified the potential core microbiota representative of distinct age groups, revealing age-related bacterial patterns and the continuous rearrangement of the microbiota in terms of relative abundances across the life span rather than the acquisition and loss of taxa. Furthermore, the shotgun approach provided insights into the functional contribution of the human gut microbiome. The metagenomic analysis revealed functional age-related differences, particularly in carbohydrate and fiber metabolism, suggesting a co-evolution of the microbiome assembly with diet. Additionally, we identified correlations between vitamin synthesis, such as thiamine and niacin, and early life, suggesting a potential role of the microbiome in human physiology, in particular in the functions of the host’s nervous and immune systems. IMPORTANCE In this study, we provided comprehensive insights into the dynamic nature of the human gut microbiota across the human life span. In detail, we analyzed a large data set based on a shotgun metagenomic approach, combining public data sets and new samples from the Parma Microbiota project and obtaining a detailed overview of the possible relationship between gut microbiota development and aging. Our findings confirmed the main stages in microbial richness development and revealed specific core microbiota associated with different age stages. Moreover, the shotgun metagenomic approach allowed the disentangling of the functional changes in the microbiome across the human life span, particularly in diet-related metabolism, which is probably correlated to bacterial co-evolution with dietary habits. Notably, our study also uncovered positive correlations with vitamin synthesis in early life, suggesting a possible impact of the microbiota on human physiology
    • …
    corecore