
REVIEW
published: 09 January 2020

doi: 10.3389/fonc.2019.01480

Frontiers in Oncology | www.frontiersin.org 1 January 2020 | Volume 9 | Article 1480

Edited by:

Paolo E. Porporato,

University of Turin, Italy

Reviewed by:

Nigel Richards,

Cardiff University, United Kingdom

Cesare Indiveri,

University of Calabria, Italy

*Correspondence:

Ovidio Bussolati

ovidio.bussolati@unipr.it

Specialty section:

This article was submitted to

Cancer Metabolism,

a section of the journal

Frontiers in Oncology

Received: 21 October 2019

Accepted: 10 December 2019

Published: 09 January 2020

Citation:

Chiu M, Taurino G, Bianchi MG,

Kilberg MS and Bussolati O (2020)

Asparagine Synthetase in Cancer:

Beyond Acute Lymphoblastic

Leukemia. Front. Oncol. 9:1480.

doi: 10.3389/fonc.2019.01480

Asparagine Synthetase in Cancer:
Beyond Acute Lymphoblastic
Leukemia
Martina Chiu 1, Giuseppe Taurino 1, Massimiliano G. Bianchi 1, Michael S. Kilberg 2 and

Ovidio Bussolati 1*

1 Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, Parma, Italy, 2Department of

Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL, United States

Asparagine Synthetase (ASNS) catalyzes the synthesis of the non-essential amino

acid asparagine (Asn) from aspartate (Asp) and glutamine (Gln). ASNS expression is

highly regulated at the transcriptional level, being induced by both the Amino Acid

Response (AAR) and the Unfolded Protein Response (UPR) pathways. Lack of ASNS

protein expression is a hallmark of Acute Lymphoblastic Leukemia (ALL) blasts, which,

therefore, are auxotrophic for Asn. This peculiarity is the rationale for the use of bacterial

L-Asparaginase (ASNase) for ALL therapy, the first example of anti-cancer treatment

targeting a tumor-specific metabolic feature. Other hematological and solid cancers

express low levels of ASNS and, therefore, should also be Asn auxotrophs and ASNase

sensitive. Conversely, in the last few years, several reports indicate that in some cancer

types ASNS is overexpressed, promoting cell proliferation, chemoresistance, and a

metastatic behavior. However, enhanced ASNS activity may constitute a metabolic

vulnerability in selected cancer models, suggesting a variable and tumor-specific role

of the enzyme in cancer. Recent evidence indicates that, beyond its canonical role in

protein synthesis, Asn may have additional regulatory functions. These observations

prompt a re-appreciation of ASNS activity in the biology of normal and cancer tissues,

with particular attention to the fueling of Asn exchange between cancer cells and the

tumor microenvironment.
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INTRODUCTION

Asparagine Synthetase (asparagine synthase (glutamine-hydrolysing) or glutamine-dependent
asparagine synthetase, E.C. 6.3.5.4, ASNS) catalyzes the biosynthesis of asparagine (Asn) from
aspartate through an ATP-dependent reaction that exploits the amido-N of glutamine (Gln) to
form the amido group of Asn.

The human ASNS gene is located at chromosome 7q21.3 and is 35 kb long with 13 exons (1).
The ASNS protein (561 aa) has two primary domains, termed the N- and C-terminal domains,
and is expressed in many tissues, with a wide range of expression levels. Particularly high levels of
expression are detected in the pancreas, brain, thyroid and testes, while the liver has low expression
of ASNS. Several transcript varieties and putative isoforms of human ASNS have been described
although information on their role in physiology and pathology is lacking.
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ASNS deficiency (ASNSD, OMIM 615574) is an autosomal
recessive, rare, severe disorder associated with congenital
microcephaly, cognitive impairment, progressive cerebral
atrophy, intractable seizures, and early death (2, 3). The
prevalence of neurologic symptoms suggests that ASNS plays
a unique role in brain development. Interestingly, plasma and
cerebral spinal fluid Asn levels are lowered only in some of the
patients tested thus far, preventing diagnosis on biochemical
bases (4). For more detailed information on ASNS structure,
enzymatic mechanism, and mutations associated with ASNSD,
the reader is referred to recent reviews and original articles
(5–7). In particular, the high-resolution crystal structure of
human ASNS recently provided by Zhu et al. (7) indicates that
the enzyme is composed of two domains, with the C-terminal
synthetase domain more similar to ASNS in other organisms
than the N-terminal glutaminase domain. The glutaminase
domain has a topology similar to that of other amidotransferases
and other conserved amino acid residues are present at the
interface of the two domains where substrate recognition occurs.
Also the amino acids in the synthetase site are for the most part
conserved in human and bacterial ASNS.

ASNS REGULATION

Numerous studies have placed ASNS at the center of the
cell response to amino acid deprivation and other forms of
cellular stress [reviewed in (5, 8–10)]. Through transcriptional
regulation, the ASNS gene is a target of two signaling pathways
aimed to ensure cell survival under conditions of imbalanced
amino acid availability, named the Amino Acid Response
(AAR) (9), and of increased endoplasmic reticulum stress, the
Unfolded Protein Response (UPR) (10). Through the activation
of, respectively, the GCN2 and the PERK kinases, both these
stress-response pathways converge on the phosphorylation of
the α-subunit of the initiation factor eIF2, which provokes the
attenuation of global protein synthesis and, at the same time,
the preferential translation of a selected population of mRNAs,
including the transcription factor ATF4. ATF4 is the major factor
for ASNS induction, working as a trans-activator through the
binding to an enhancer element within ASNS promoter (8). A
very recent contribution (11) demonstrates that in Asn-depleted
cancer cells a translational reprogramming, dependent on the
increase of MAPK-interacting kinase 1 (MNK1) and eukaryotic
translation initiation factor 4E (eIF4E), promotes enhanced ATF4
translation and, hence, ASNS expression. The role of other
components of the UPR, such as IRE and ATF6, seems less
important (12). However, ASNS transcription is also influenced
by factors such as p53, which can serve as a negative regulator of
the gene (13).

LOW ASNS EXPRESSION IN ACUTE
LYMPHOBLASTIC LEUKEMIA: OLD
OBSERVATIONS AND NEW
PERSPECTIVES

Interest in the role of ASNS in cancer was initially due to
the observation of low synthetic activity for Asn in malignant

tissues (14, 15), which were, therefore, auxotrophic for Asn,
thus accounting for sensitivity to bacterial L-asparaginases
(ASNase). The widespread clinical use of ASNase in acute
lymphoblastic leukemia (ALL) began in the 1970s and today
is a cornerstone of multi-drug therapy for this hematological
cancer (16, 17). Thus, ASNase represents the first, and until now
uniquely successful, example of a therapeutic approach targeting
a metabolic feature of a specific form of cancer. Moreover, the
strict requirement for extracellular Asn of ALL blasts (and of
some lymphoma models), due to low levels of ASNS protein
expression, was the first example of a cancer-specific auxotrophy
for a non-essential amino acid (18). More recently, other
examples have been described in human cancers, such as the loss
of argininosuccinate synthetase in hepatocellular carcinomas,
metastatic melanomas, and other cancers, leading to auxotrophy
for arginine (19), and the absence of glutamine synthetase
expression in multiple myeloma (20) and oligodendroglioma
(21), leading to Gln auxotrophy.

Given the low expression of ASNS, the incubation of ALL
blasts with ASNase is rapidly followed by the fall of intracellular
Asn and by a prolonged nutritional stress, which causes
proliferative arrest and, eventually, apoptotic death of leukemia
cells. In most normal and cancer cell types investigated thus
far, ASNS mRNA and protein expression is rapidly increased
upon Asn deprivation, as a result of the transcriptional response
to the AAR (see below) but, while the fast increase in mRNA
occurs also in ALL cells (22), the increase in protein is severely
delayed, suggesting the existence of an active translational
silencing mechanism. It is this delay in the increase of ASNS
protein expression that renders ALL cells sensitive to ASNase
(23). Possible translational control may explain the numerous
clinical reports that showed no correlation between ASNS
mRNA and ASNase sensitivity (24). Recently, Jiang et al. have
demonstrated that methylation status of the ASNS promoter is
not the same in different ALL models and that hypermethylation
inversely correlates not only with the basal ASNS expression
but also with the capacity to trigger the ATF4-dependent
increase in ASNS expression upon following Asn depletion
(25). However, although, intuitively, ASNS induction has been
correlated with resistance to ASNase, it has been known for
many years that ASNase-resistant ALL cells present a complex
phenotype. Indeed, if ASNS overexpression is sufficient to
induce the ASNase-resistant phenotype in specific ALL cell
models (22), adequate availability of the ASNS substrates Gln
and aspartate (Asp) requires multiple adaptation mechanisms
(26, 27) (Figure 1).

The relationship between ASNS expression and ASNase
sensitivity/resistance has also been complicated by the fact
that both the bacterial ASNases exploited in therapy, derived
from Escherichia coli or from Erwinia chrysantemi [now
Dickeya dadantii (28)], are endowed with a low level of
glutaminase activity (29). Therefore, after ASNase infusion, the
depletion of both Asn and Gln ensues, although at different
levels of severity and with different kinetics. The capacity of
counteracting glutamine depletion is obviously also relevant for
the cellular adaptation to ASNase-dependent nutritional stress.
Indeed, ASNS protein induction would be functionally less
effective in conditions of severe cell depletion of Gln, since
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FIGURE 1 | Mechanisms involved in resistance to L-asparaginase. Upper

panel, ASNase catalyzes the hydrolysis of asparagine (Asn) into aspartate

(Asp) and of glutamine (Gln) into glutamate (Glu), driving low-ASNS cells to cell

death. Central panel, ASNS induction and increase in GS protein expression

are not able to rescue ASNase-induced apoptotis due to poor availability of

their substrates Asp and Glu. Lower panel, the overexpression of EAAT1 or

EAAT3 anionic amino acid transporters provides Glu (for the synthesis of Gln,

through Glutamine Syntethase) and Asp (27). Both Gln and Asp are needed for

Asn synthesis via ASNS and for an effective cell rescue. The model is mainly

based on data obtained with prostate cancer cells by Sun et al. (27) but it may

apply to other low-ASNS cancers.

human ASNS requires Gln as its obliged ammonia-donating
substrate (Figure 1).

The issue of the relevance of the glutaminase activity for the
antileukemic effects of ASNase has been widely debated [see for
review (30)]. In the last few years, importance has been attributed
to residual ASNS protein expression in ALL blasts. Chan et al.

obtained a mutant E. coli ASNase, devoid of glutaminase activity,
which is fully effective toward ASNS-null ALL blasts, but not
toward ALL blasts with a residual expression of ASNS protein
(31). Unfortunately, no attempt was made to correlate ASNS
protein expression to enzymatic activity. However, more recent
results from the same group, obtained with a murine leukemia
model of ASNS-null ALL, indicate that, actually, glutaminase
activity was needed for a durable suppression of the tumor (32).
Further investigation is needed to fully understand the role of
cellular Gln levels on ASNase sensitivity and glutaminase action
in ALL progression.

LOW EXPRESSION OF ASNS AS A
MARKER OF SENSITIVITY TO ASNASE IN
OTHER CANCERS

The assumption that low ASNS expression represents the major
hallmark for sensitivity to ASNase prompted the research of
other Asn-auxotroph cancers. As far as hematological cancers
are concerned, ASNase has been proposed for the therapy of
several conditions [see for review (33)]. Several years ago it was
demonstrated that the M5 subgroup of acute myeloid leukemias
(AML) is characterized by low ASNS expression and, hence, high
sensitivity to ASNase (34). Amore complete attempt to categorize
AML subgroups on the basis of ASNase sensitivity indicated that
M1 and M0 were the most sensitive, while M3 and M7 were
poorly sensitive and M4-M5 were confirmed to have a moderate
sensitivity (35). Although no correlation was made between
ASNase sensitivity and ASNS protein expression in that paper,
a good response to therapy associated with low ASNS mRNA
expression was later reported, at least for M0 (36). More recently,
since chromosome 7 monosomy (-7) is frequently detected in
adverse-risk AML and therapy-related myeloid neoplasms in
children, the hypothesis that this aberration correlates with
sensitivity to ASNase was investigated (37). Monosomic cells
were indeed more sensitive to ASNase and exhibited significantly
lowered ASNS mRNA and protein expression (37). However,
the correlation between ASNase-sensitivity and ASNS expression
of AML was not considered strong (33), consistently with the
importance attributed to Gln, rather than Asn depletion, in the
mechanism of the cytotoxic effects of bacterial ASNases on AML
cells (38, 39).

ASNase has greatly improved the therapy of Natural Killer
(NK)/T cell lymphoma, an aggressive lymphoid tumor associated
with a poor prognosis (40, 41). Using a panel of 7 lymphoma
cell lines and a retrospective analysis of patient samples, Li
et al. demonstrated that ASNS expression inversely correlated
with sensitivity to ASNase and positive clinical outcome (42).
These data have been substantially confirmed in a more recent
study (43).

ASNS has been investigated in solid tumors for many years,
and the emerging picture is quite complex. In more than
50% of sporadic pancreatic ductal adenocarcinomas (PDAC),
ASNS protein expression is very low (44), an observation
that should be considered in light of the fact that normal
exocrine pancreas has the highest basal ASNS expression of
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any tissue in the body (8, 45). Moreover, pancreatitis is one
of the primary clinical complications exhibited by ALL patients
treated with ASNase (46), suggesting that pancreatic exocrine
cells are particularly sensitive to Asn depletion. Consistent with
low ASNS expression, PDAC cell lines were sensitive to ASNase,
and the most sensitive expressed the lowest levels of ASNS
(44). Furthermore, in pancreatic cancer cells, ASNS induction is
caused by glucose deprivation and is associated with increased
resistance to cisplatin-induced apoptosis (47). Collectively, these
data support the possible exploitation of ASNase in selected cases
of low-ASNS PDAC, although they must also be interpreted in
the context of the complex metabolic peculiarities of pancreatic
cancer (48). Recently, it has been demonstrated that ASNS
hypermethylation leads to the lack of ASNS protein expression
in gastric and liver cancer cells, making them sensitive to E. coli
ASNase treatment both in vitro and in vivo (49). Thus, patients
could be stratified for ASNase trials on the basis of ASNS protein
expression level.

HIGH ASNS EXPRESSION IN CANCER: A
PRO-TUMOR ENZYME?

In several models of human solid cancers ASNS expression has
been found to be positively correlated with tumor growth and, in
some cases, chemo-resistance, especially if cis-platinum-derived
drugs are involved (47, 50, 51). Interestingly, a recent report
indicates that ASNS may be itself an additional target of
platinum(II) compounds, and that these drugs cause a decrease
in cell Asn as a consequence of ASNS inhibition (52).
However, independently of effects on chemoresistance, ASNS
overexpression has been linked to unfavorable clinical outcomes
in multiple cancers (53). For example, as a possible extension
of ASNase exploitation to solid tumors, Lorenzi et al. reported
that the sensitivity to ASNase of cell lines derived from human
ovarian carcinomas was inversely correlated with ASNS mRNA
abundance (54) and, even more strongly, with ASNS protein
levels (55). In other cases, direct genetic targeting of ASNS
expression has been used to document enzyme effects on cancer
cells. For instance, ASNS silencing lowers proliferation of human
gastric cancer cells either in vitro or in vivo and synergizes
the cytotoxicity of cisplatin (50). ASNS mRNA is significantly
overexpressed in human gastric cancer samples compared with
normal gastric tissue, and its expression inversely correlates
with patient survival (50). ASNS knockdown hinders growth of
melanoma cells and epidermoid carcinoma cells, inducing cell
cycle, down-regulation of CDK4, CDK6, and Cyclin D1, and
induction of p21WAF (56). With a similar approach, Xu et al.
reported a role for ASNS in the growth and colony formation
ability of lung cancer (NSCLC) cells and demonstrated higher
ASNS expression in lung cancer tissues than in normal lung
tissue (57). A pharmacological approach was instead adopted
by Hettmer et al. who demonstrated that an adenylated ASNS
inhibitor inhibits the growth of murine and human sarcoma cell
lines (58). In the same contribution, ASNS silencing lowered
the portion of cells in S phase, an effect rescued by exogenous
asparagine, and ASNS expression was found in a substantial

portion of human rhabdomyosarcomas (over 70%) and in a
smaller, but significant percentage of human leiomyosarcomas
(more than 40%).

In breast cancer cells, ASNS is a target of IGF1/IGF2-
dependent anabolic signaling (59), and, consistently, ASNS
silencing depressed cell proliferation in two distinct cell lines, one
of which derives from a triple negative tumor (60). Moreover,
ASNS expression and Asn availability have been found to be
strongly correlated with the metastatic behavior of breast cancer
(61). Interestingly, in this study ASNS knock down did not affect
the growth of the primary tumor but its metastatic behavior,
which was significantly promoted, together with epithelial-to-
mesenchymal transition, by enforced ASNS expression (61).
From xenografts of the triple negative breast cancer cell line
MDA-MB-231 Ameri et al. (62) obtained circulating tumor cells
(CTC), which exhibit an increased capability of inducing ATF3
and ATF4 under hypoxic conditions, higher ASNS expression
and a more aggressive phenotype in vitro and in vivo. Mining
publicly available datasets, Lin et al. demonstrated that, among
the breast cancer subtypes, triple negative has the highest ASNS
protein expression (53).

As far as prostate cancer is concerned, data on possible
derangements of ASNS expression in cells derived from this
tumor have been known since several years. ASNS was included
in a group of over-expressed genes in prostate cancer cells
adapted to grow in suspension (63). More recently, ASNS
mRNA overexpression, due to increased copy number of the
gene, was detected in surgical specimens of castration-resistant
prostate cancer and correlated with ASNS protein abundance
(64). Moreover, ASNS protein expression was associated with
progression to a therapy-resistant disease state (64). Interestingly,
the effects of ASNase on the PC3 prostate cancer cell line
and ASNS induction have been used to validate a detection
system for measuring restrictive amino acids in tumors based
on ribosome profiling (diricore, a procedure for differential
ribosome measurements of codon reading (65).

Somewhat contradictory findings have been obtained for the
role of ASNS in human hepatocellular carcinoma (HCC). Indeed,
although ASNS was overexpressed in HCC, low expression
has been found to be a negative outcome marker, at least in
terms of overall survival, and experiments with HCC cell lines
indicated that ASNS hinders cell proliferation, migration, and
tumorigenicity (66). On the contrary, Li and Dong have reported
that ASNS levels, along with those of the ER stress-related
transcription factor ATF6, are lower in HCC than in either
control subjects or patients affected by chronic hepatitis B (67).
While the reasons for the discrepancy between these two studies
are unclear, it should be noted that Zhang et al. studied ASNS
protein expression (66), whereas only mRNA was measured
by Li and Dong (67). As noted above for ALL and ovarian
cancer, there can be a lack of correlation between ASNS mRNA
and protein expression. Interestingly, Li and Dong discovered
an ASNS polymorphism (rs34050735), corresponding to the 5’
UTR region of the mRNA, that was significantly associated with
HCC (67).

In colorectal cancer ASNS expression may also have pro-
tumor or anti-tumor roles. ASNS has been found up-regulated
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in several human cell lines and clinical specimens derived
from colon carcinoma with mutated KRAS (68). In particular,
in a series of 93 patients, ASNS protein was high in over
70% of the KRAS-mutated cases but only in 30% of those
with wild-type KRAS. ASNS expression was induced by
KRAS-activated signaling, in particular through the PI3K-AKT-
mTOR pathway, and repressed upon KRAS-silencing. Moreover,
ASNS knockdown in vivo suppressed the growth of KRAS-
mutant colon cancers, suggesting a tumor-favoring role of the
enzyme in these cancers (68). However, the situation in vivo
may be more complex. Indeed, Lin et al. have reported that
low ASNS expression could constitute a negative prognostic
factor, using both transcriptional data from public databases
and immunocytochemical analysis of a cohort of 172 patients.
In particular, ASNS low expression was significantly associated
with advanced post-treatment tumor, nodal status, inferior
tumor regression grade, shorter local recurrence-free survival,
metastasis-free survival and disease-specific survival, and was
predictive of worse outcomes and poor therapeutic response
to neo-adjuvant therapy (69). It is tempting to attribute these
discrepancies to differences in themutational status of the tumors
but further data are needed to confirm this hypothesis.

ASNS IN CANCER: BEYOND ASN
SYNTHESIS?

A direct link between the effects of ASNS expression on cancer
cells and Asn production has been recently demonstrated.
Looking for regulators of the metastatic behavior in human
colon cancer, Duquet et al. (70) identified the sex-determining
region Y (SRY)-box, member 12 (SOX12), as a suppressor
of metastatic behavior of HT29 xenografts. However, in a
more recent paper, Du et al. (71) demonstrate that in two
independent, large colorectal cancer cohorts HIF-1α-mediated
SOX12 overexpression is not only associated with a metastatic
behavior, but also with a poor prognosis. Moreover, it also
enhanced cell proliferation in vitro. Investigating the underlying
mechanisms, they discovered that Asn synthesis was greatly
favored by SOX12 through the coordinated induction of
glutaminase, glutamic oxaloacetic transaminase 2, and ASNS.
These observations were confirmed in samples from patients.
Consistent with the observations in the patients, down-
regulation or overexpression of the three enzymes had opposite
effects on cell proliferation and metastasis development. The role
of Asn in these effects was confirmed by the inhibition of tumor
growth and metastasis by ASNase (71).

However, although it is tempting to attribute ASNS effects on
cancer growth to the Asn synthesizing activity of ASNS, its role
may not be simply ensuring Asn availability for protein synthesis.
In this case, very small amounts of Asn would be sufficient for
cell viability and growth. Moreover, increased ASNS activity may
not produce large effects on the intracellular levels of Asn, since
Asn exerts a product inhibition on the enzyme acting on the
recognition site for glutamine.

In fact, Asn could have additional roles, as recently suggested
by Krall et al. (72), who demonstrated that Asn, either produced

by the cell through ASNS activity or imported from the medium,
is used as an exchange factor to promote entry and consumption
of other amino acids, such as serine, arginine and histidine, and
consequently, activate mTORC1 activity and protein synthesis.
The transport routes responsible for the exchange were not
identified, although the authors suggest that the ubiquitous
exchange transporter for neutral amino acids LAT1 may be
involved (72). However, earlier characterization work on LAT
transporters would instead suggest that LAT2, rather than LAT1,
mediates the efflux of amino acids with amido-side chain,
such as Gln and Asn (73, 74). Moreover, as a determinant of
serine uptake, Asn may modulate both serine metabolism and
nucleotide synthesis (72).

Recent results would indicate that the relationships between
ASNS, Asn, and mTORC1 activity may be more complex than
envisaged. Indeed, ASNS silencing in melanoma and colon
carcinoma cells causes the activation of the MAPK cascade
and the activation of mTORC1 that, in turn, potentiates ATF4-
dependent ASNS induction (11). Under the conditions adopted
by Pathria et al., intracellular Asn is lowered by 30% by
ASNS silencing, but the hypothesis that this decrease accounts
for MAPK and mTORC1 activation was not directly verified,
leaving open the question if these effects are due to changes in
intracellular Asn or to some other ASNS-dependentmechanisms.
However, these important contributions provide insight into how
Asn can influence protein synthesis and cell viability well-beyond
its role of proteinogenic amino acid, explaining why, in some
instances, it can compensate for Gln starvation (75).

ASNS may also have other roles in cancer cell metabolism,
possibly related to its participation in the response to cell
stress. In NSCLC, for example, KRAS promotes ATF4 pathway
activation during nutrient depletion, promoting amino acid
uptake, and Asn biosynthesis (76). In the same cell model,
ASNS contributes to apoptotic suppression, protein biosynthesis,
and mTORC1 activation, while ASNS repression due to the
inhibition of AKT had an anti-tumor effect, which is enhanced
by the depletion of extracellular Asn (76). KRAS-mediated
overexpression of ASNS has been also described in colon
cancer in the context of adaptation to nutritional stress upon
Gln starvation (68). That study found that mutated KRAS
caused Asp decrease and Asn increase and that these changes
were associated, both in cancer cell lines and primary tumors,
with increased ASNS expression through the PI3K-AKT-mTOR
pathway. These cells were resistant to Gln depletion, a behavior
suppressed by ASNS knockdown but rescued if ASNS-silenced
cells are incubated in Asn-supplemented medium. Moreover,
both ASNS knock-down and the combined treatment with
rapamycin and ASNase inhibited the growth of KRAS-mutant
colon cancer xenografts in vivo (68). The relationship between
KRAS mutations and ASNS expression may underlie a specific
role of Asn in autophagy regulation. It is known that the
knockout of Atg5, a gene needed for the autophagic response,
significantly extends the survival of a murine model of salivary
duct carcinoma (SDC) driven by oncogenic KRASG12V, while
it causes a specific Asn deficiency and a compensatory ASNS
overexpression (53). Consistently, autophagy or ASNS inhibition
reduced KRAS-driven tumor cell proliferation, migration, and
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invasion, all effects rescued by Asn supplementation. Finally,
these observations were reflected in human cancer-derived data,
linking ASNS expression and malignancy (53).

A role for ASNS in the cell response to nutritional stress
has been also shown by Ye et al. (77), considering that
its master activator ATF4 is also overexpressed in human
tumors. Overexpression of ASNS or Asn supplementation,
but not of other non-essential amino acids, counteracts the
proliferative block and cytotoxicity due to ATF4 silencing in
human fibrosarcoma and colorectal adenocarcinoma cells. The
knockdown of ATF4, or the suppression of its induction by
GCN2 silencing, inhibited tumor growth in vivo (77). These
results have been further extended by Tameire et al. (78),
demonstrating that MYC upregulates ATF4 through GCN2
activation and that, subsequently, ATF4 induces several genes
that are also MYC targets, many of which involved in amino
acid transport (such as SLC1A5) and metabolism (such as ASNS).
This group of genes also includes 4E-BP1, leading the authors
to hypothesize that, through ATF4-mediated gene induction,
tumor cells couple enhanced translation rates with survival. In
several human tumors, such as diffuse large B-cell lymphoma,
colorectal cancer, breast cancer and sarcoma, 4E-BP1 levels were
positively correlated with ATF4-target genes, including ASNS
(78). These results potentially link ASNS induction and the
successful response to oncogene-dependent proteotoxic stress
and hence cancer cell survival, although the precise role played by
ASNS in these complex mechanisms awaits further investigation.

ASNS EXPRESSION AS A METABOLIC
VULNERABILITY

Together with Asn auxotrophy, associated with ASNS silencing,
arginine auxotrophy, which depends on absent expression
of argininosuccinate synthase 1 (ASS1), represents another,
widely investigated metabolic vulnerability in human cancers.
In arginine-auxotroph human breast cancer cell lines, arginine
depletion induces ASNS, provoking a depletion of Asp that
hinders malate-aspartate shuttle and promotes cell death
(79). Thus, in this particular model, ASNS induction, rather
than constituting a pro-survival mechanism, would promote
cytotoxicity through Asp depletion.

The importance of Asp metabolism in cancer has been
increasingly recognized in the last few years (80–82). Since
human cells cannot use Asn as a source of Asp, due to lack
of sizable expression of enzymes with asparaginase activity, the
metabolic relationship between the two amino acids is a one-
way pathway, where Asp can be used a Asn source, while the
reverse is not possible. Interestingly, if the expression of guinea
pig ASNase is forced in human cancer cells, Asn uptake can fuel
the intracellular pool of Asp, and cell growth is stimulated (83),
providing a proof-of-principle demonstration of the importance
of an adequate Asp availability for fast cell proliferation.
Membrane transport can limit cell availability of Asp, which,
at the levels present in human plasma, relies on the activity
of high-affinity, sodium-dependent EAAT transporters (84, 85).
A member of the family, EAAT1, coded by SLC1A3, has been

identified as an important contributor of resistance to ASNase in
several lines of prostate cancer cells (27). In one of these models,
although ASNS is heavily induced upon ASNase treatment, cell
death is not prevented if EAAT1 is pharmacologically inhibited
(27). Interestingly, prostate cancer cell lines endowed with low
expression of EAAT1 exhibit sizable levels of other EAATs, such
the ubiquitous EAAT3, which is regulated at transcriptional level
under various stress conditions (85).

Another example of possible ASNS-mediated vulnerability
comes from the studies of Wong et al. on KRAS-mutated
colorectal cancers. SLC25A22, which encodes a mitochondrial
glutamate transporter, is one of the genes up-regulated in
these tumors. Increased SLC25A22 protein was observed in
colorectal cancer tissues and was associated with shorter survival,
while transporter knock-down hindered cancer cell proliferation,
migration, invasion in vitro and tumor formation and metastasis
in vivo. The biochemical alteration attributable to SLC25A22
knockdown and accounting for the anti-proliferative effects is
the inhibition of Asp biosynthesis and the consequent depletion
of oxaloacetate leading to hampered regeneration of NAD+

and NADP+, glycolysis hindrance and energetic crisis. In this
context, the inhibition of ASNS-mediated Asn synthesis would be
another effect of Asp depletion, specifically leading to hindered
cell migration (86). One would wonder what are the links
between the two KRAS-mediated effects on Asn-Aspmetabolism.
Although SLC25A22 would be permissive for Asp synthesis,
ASNS induction would promote its consumption, suggesting that
a dysregulated ASNS expression would be, in fact, a menace for
the energetic equilibrium of the cancer cell.

DISCUSSION

The examples discussed in the last paragraph indicate that,
in some cancers, low ASNS expression may be advantageous.
However, most of the epidemiological and experimental evidence
gathered thus far suggest a pro-cancer role of the enzyme,
pointing to a metabolic advantage for high-ASNS cancer cells.
Thus, both low- and high-ASNS expression may imply metabolic
advantages in particular cancer models (Figure 1). It should
be remarked that either situation also implies some potential
metabolic vulnerabilities, such as Asp depletion, for high-ASNS
tumors, and Asn auxotrophy, for low-ASNS cancers.

If high ASNS expression really confers marked metabolic
advantages, one wonders what is the significance of ASNS
silencing in the majority of ALL blasts and in the other examples
of Asn-auxotroph tumors, discussed above. For these cancers,
the maintenance of the intracellular pool of Asp seems more
important than ensuring an intracellular source of Asn. In
these cells, blocking the expression of ASNS would indeed leave
most cell Asp available to other metabolic pathways, such as
nucleotide and non-essential amino acid synthesis or energy
production (Figure 2). On the other hand, Asn auxotrophy not
only has the obvious consequence of an increased sensitivity
to Asn depletion and, hence, to ASNase treatment, but also
entails a strict dependence of the cancer cells on extracellular
sources of the amino acid even under normal growth conditions.
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FIGURE 2 | The potential metabolic advantages of low and high expression of Asparagine Synthetase (ASNS) in cancer cells. (Left) Low ASNS expression, caused by

promoter methylation, renders cells dependent on asparagine (Asn) uptake, while increasing aspartate (Asp) availability for the synthesis of nucleotides, other

non-essential amino acids (NEAA), and energy production. Transporters most likely involved in Asn uptake are shown, although the indication is largely hypothetical in

most cancer models. (Right) Increased ASNS transcription, due to either gene amplification or high ATF4 activity, raises Asn production that enhances protein

synthesis and cell growth by activating the mammalian target of rapamycin complex 1 (mTORC1) through the influx of essential amino acids mediated by exchange

through a LAT transporter (72), tentatively identified as LAT2. Other transporters have been omitted for clarity. However, other mechanisms, such as direct effects of

Asn or Asp on mTORC1, should not be excluded but the information available (11, 68, 72) does not allow generalizable conclusions. See text for discussion.

Since Asn plasma levels are much lower than those of Gln,
and the transport systems for neutral amino acids are usually
endowed with fairly high Km values, it is expected that
Asn auxotroph tumors establish close relationships with their
microenvironment to exploit neighboring cells as an efficient
Asn source. Actually, metabolic support to ASNase-treated ALL
blasts by ASNS-expressing mesenchymal stromal cells has been
reported (87), although mechanisms underlying the putative Asn
fluxes have not been investigated.

At variance with the transport of other amino acids, in
particular Gln, which shares many structural similarities with
Asn and is its metabolic precursor, the characteristics of Asn
transport have not been extensively studied in Asn-auxotroph
cancer cells. It is known that Gln, Asn and His are substrates
of the so called “N system” transporters (88), such as SNAT3,
SNAT5 and SNAT7 (89, 90), but little information is available
on the expression of these transporters in cancer tissues, and
no attempt has been made thus far to correlate their expression
with that of ASNS. Also other transporters of the SLC38
family, such as the System A carriers SNAT1 and SNAT2
(90), and the product of SLC1A5 (ASCT2) (91) accept Asn
as a substrate. However, lack of a comprehensive knowledge
of Asn transporters in cancer constitutes an important gap

given that Asn membrane fluxes are obviously essential for
the survival of Asn-auxotroph cancer cells. The definition of
transport mechanisms involved in Asn transmembrane fluxes
would be highly valuable also for the biology of high-ASNS
cancers, which are thought to export sizable amounts of the
amino acid into the extracellular medium (72). In these tumors,
Asn may work as a modulator of the behavior of normal cells
within the cancer microenvironment, as recently suggested for
endothelial cells (92).

The results recounted in this contribution indicate that the
role played by ASNS may be cancer-specific and should be
assessed on an individual basis. Therefore, to better define the
role of ASNS expression and activity in human cancers, specific
and potent inhibitors would be extremely important and have
been actively searched for many years (93, 94). Many classes
of compounds have been proposed thus far (29), in some cases
with high potency (95) and promising results in vitro (96, 97),
but no specific ASNS inhibitor is yet in clinical experimentation
or even commercially available. As a consequence, experimental
ASNS inhibition still relies on genetic manipulation. However,
most recently, Zhu et al. (7) have described a slow-onset inhibitor,
which binds to a negatively charged cluster of side chains in the
synthetase domain of humanASNSwith nanomolar affinity and a
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good specificity in vitro and may be the basis for novel anticancer
compounds targeting ASNS.
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