83 research outputs found

    Ground--state energies and widths of 5^5He and 5^5Li

    Full text link
    We extract energies and widths of the ground states of 5^5He and 5^5Li from recent single--level R--matrix fits to the spectra of the 3^3H(d,γ({\rm d},\gamma)5^5He and the 3^3He(d,γ({\rm d},\gamma)5^5Li reactions. The widths obtained differ significantly from the formal R--matrix values but they are close to those measured as full widths at half maxima of the spectra in various experiments. The energies are somewhat lower than those given by usual estimates of the peak positions. The extracted values are close to the S--matrix poles calculated previously from the multi--term analyses of the N-4^4He elastic scattering data.Comment: 3 pages, no figures, uses revtex.sty, accepted for publication in PRC, uuencoded postscript and tex-files available at ftp://is1.kph.tuwien.ac.at/pub/ohu/fwidth.u

    DCC gene network in the prefrontal cortex is associated with total brain volume in childhood

    Get PDF
    BACKGROUND: Genetic variation in the guidance cue DCC gene is linked to psychopathologies involving dysfunction in the prefrontal cortex. We created an expression-based polygenic risk score (ePRS) based on the DCC coexpression gene network in the prefrontal cortex, hypothesizing that it would be associated with individual differences in total brain volume. METHODS: We filtered single nucleotide polymorphisms (SNPs) from genes coexpressed with DCC in the prefrontal cortex obtained from an adult postmortem donors database (BrainEAC) for genes enriched in children 1.5 to 11 years old (BrainSpan). The SNPs were weighted by their effect size in predicting gene expression in the prefrontal cortex, multiplied by their allele number based on an individual's genotype data, and then summarized into an ePRS. We evaluated associations between the DCC ePRS and total brain volume in children in 2 community-based cohorts: the Maternal Adversity, Vulnerability and Neurodevelopment (MAVAN) and University of California, Irvine (UCI) projects. For comparison, we calculated a conventional PRS based on a genome-wide association study of total brain volume. RESULTS: Higher ePRS was associated with higher total brain volume in children 8 to 10 years old (β = 0.212, p = 0.043; n = 88). The conventional PRS at several different thresholds did not predict total brain volume in this cohort. A replication analysis in an independent cohort of newborns from the UCI study showed an association between the ePRS and newborn total brain volume (β = 0.101, p = 0.048; n = 80). The genes included in the ePRS demonstrated high levels of coexpression throughout the lifespan and are primarily involved in regulating cellular function. LIMITATIONS: The relatively small sample size and age differences between the main and replication cohorts were limitations. CONCLUSION: Our findings suggest that the DCC coexpression network in the prefrontal cortex is critically involved in whole brain development during the first decade of life. Genes comprising the ePRS are involved in gene translation control and cell adhesion, and their expression in the prefrontal cortex at different stages of life provides a snapshot of their dynamic recruitment

    Scale-free memory model for multiagent reinforcement learning. Mean field approximation and rock-paper-scissors dynamics

    Full text link
    A continuous time model for multiagent systems governed by reinforcement learning with scale-free memory is developed. The agents are assumed to act independently of one another in optimizing their choice of possible actions via trial-and-error search. To gain awareness about the action value the agents accumulate in their memory the rewards obtained from taking a specific action at each moment of time. The contribution of the rewards in the past to the agent current perception of action value is described by an integral operator with a power-law kernel. Finally a fractional differential equation governing the system dynamics is obtained. The agents are considered to interact with one another implicitly via the reward of one agent depending on the choice of the other agents. The pairwise interaction model is adopted to describe this effect. As a specific example of systems with non-transitive interactions, a two agent and three agent systems of the rock-paper-scissors type are analyzed in detail, including the stability analysis and numerical simulation. Scale-free memory is demonstrated to cause complex dynamics of the systems at hand. In particular, it is shown that there can be simultaneously two modes of the system instability undergoing subcritical and supercritical bifurcation, with the latter one exhibiting anomalous oscillations with the amplitude and period growing with time. Besides, the instability onset via this supercritical mode may be regarded as "altruism self-organization". For the three agent system the instability dynamics is found to be rather irregular and can be composed of alternate fragments of oscillations different in their properties.Comment: 17 pages, 7 figur

    Affective Guide with Attitude

    Full text link
    The Affective Guide System is a mobile context-aware and spatial-aware system, offering the user with an affective multimodal interaction interface. The system takes advantage of the current mobile and wireless technologies. It includes an ‘affective guide with attitude’ that links its memories and visitor’s interest to the spatial location so that stories are relevant to what can be immediately seen. This paper presents a review of related work, the system in detail, challenges and the future work to be carried out

    Size Doesn't Matter: Towards a More Inclusive Philosophy of Biology

    Get PDF
    notes: As the primary author, O’Malley drafted the paper, and gathered and analysed data (scientific papers and talks). Conceptual analysis was conducted by both authors.publication-status: Publishedtypes: ArticlePhilosophers of biology, along with everyone else, generally perceive life to fall into two broad categories, the microbes and macrobes, and then pay most of their attention to the latter. ‘Macrobe’ is the word we propose for larger life forms, and we use it as part of an argument for microbial equality. We suggest that taking more notice of microbes – the dominant life form on the planet, both now and throughout evolutionary history – will transform some of the philosophy of biology’s standard ideas on ontology, evolution, taxonomy and biodiversity. We set out a number of recent developments in microbiology – including biofilm formation, chemotaxis, quorum sensing and gene transfer – that highlight microbial capacities for cooperation and communication and break down conventional thinking that microbes are solely or primarily single-celled organisms. These insights also bring new perspectives to the levels of selection debate, as well as to discussions of the evolution and nature of multicellularity, and to neo-Darwinian understandings of evolutionary mechanisms. We show how these revisions lead to further complications for microbial classification and the philosophies of systematics and biodiversity. Incorporating microbial insights into the philosophy of biology will challenge many of its assumptions, but also give greater scope and depth to its investigations

    Frobenius structures over Hilbert C*-modules

    Get PDF
    We study the monoidal dagger category of Hilbert C*-modules over a commutative C*-algebra from the perspective of categorical quantum mechanics. The dual objects are the finitely presented projective Hilbert C*-modules. Special dagger Frobenius structures correspond to bundles of uniformly finite-dimensional C*-algebras. A monoid is dagger Frobenius over the base if and only if it is dagger Frobenius over its centre and the centre is dagger Frobenius over the base. We characterise the commutative dagger Frobenius structures as finite coverings, and give nontrivial examples of both commutative and central dagger Frobenius structures. Subobjects of the tensor unit correspond to clopen subsets of the Gelfand spectrum of the C*-algebra, and we discuss dagger kernels.Comment: 35 page
    corecore