56 research outputs found

    Study of scattered radiation during fluoroscopy in hip surgery

    Get PDF
    Objetivo: Medir a intensidade da dose de radiação espalhada em diferentes posições simulando uma intervenção cirúrgica no quadril. Materiais e Métodos: Simulou-se uma intervenção cirúrgica no quadril com apoio da fluoroscopia para estudar a distribuição da radiação espalhada no bloco operatório. Para simular o paciente foi utilizado um simulador antropomórfico de corpo inteiro e para medir a radiação utilizou-se um detector específico para medir raios X. Realizaram-se incidências com um equipamento de raios X tipo arco em C móvel, em modo de escopia contínua, com a ampola a 0° (configuração 1) e a 90° (configuração 2). Os parâmetros operacionais utilizados (voltagem, corrente, tempo de exposição) foram determinados por meio de um estudo estatístico resultante da observação de cirurgias ortopédicas de quadril. Resultados: Em todas as medições observaram-se exposições mais elevadas na configuração 2. Nas medições em função da altura, observaram-se os valores máximos da taxa de dose de 1,167 (± 0,023) µSv/s e 2,278 (± 0,023) µSv/s nas configurações 1 e 2, respectivamente, correspondendo à altura do tórax dos profissionais. No estudo em torno do paciente os valores máximos registraramse na posição ocupada pelo médico cirurgião. Conclusão: Concluiu-se que a exposição à radiação dos profissionais é baixa, podendo ainda ser reduzida mediante o uso de equipamentos de proteção individualObjective: To measure the scattered radiation dose at different positions simulating hip surgery. Materials and Methods: We simulated fluoroscopy-assisted hip surgery in order to study the distribution of scattered radiation in the operating room. To simulate the patient, we used a anthropomorphic whole-body phantom, and we used an X-ray-specific detector to quantify the radiation. Radiographs were obtained with a mobile C-arm X-ray system in continuous scan mode, with the tube at 0° (configuration 1) or 90° (configuration 2). The operating parameters employed (voltage, current, and exposure time) were determined by a statistical analysis based on the observation of orthopedic surgical procedures involving the hip. Results: For all measurements, higher exposures were observed in configuration 2. In the measurements obtained as a function of height, the maximum dose rates observed were 1.167 (± 0.023) µSv/s and 2.278 (± 0.023) µSv/s in configurations 1 and 2, respectively, corresponding to the chest level of health care professionals within the operating room. Proximal to the patient, the maximum values were recorded in the position occupied by the surgeon. Conclusion: We can conclude that, in the scenario under study, health care professionals workers are exposed to low levels of radiation, and that those levels can be reduced through the use of personal protective equipmen

    Interventional suite and equipment management: cradle to grave

    Get PDF
    The acquisition process for interventional equipment and the care that this equipment receives constitute a comprehensive quality improvement program. This program strives to (a) achieve the production of good image quality that meets clinical needs, (b) reduce radiation doses to the patient and personnel to their lowest possible levels, and (c) provide overall good patient care at reduced cost. Interventional imaging equipment is only as effective and efficient as its supporting facility. The acquisition process of interventional equipment and the development of its environment demand a clinical project leader who can effectively coordinate the efforts of the many professionals who must communicate and work effectively on this type of project. The clinical project leader needs to understand (a) clinical needs of the end users, (b) how to justify the cost of the project, (c) the technical needs of the imaging and all associated equipment, (d) building and construction limitations, (e) how to effectively read construction drawings, and (f) how to negotiate and contract the imaging equipment from the appropriate vendor. After the initial commissioning of the equipment, it must not be forgotten. The capabilities designed into the imaging device can be properly utilized only by well-trained operators and staff who were initially properly trained and receive ongoing training concerning the latest clinical techniques throughout the equipment’s lifetime. A comprehensive, ongoing maintenance and repair program is paramount to reducing costly downtime of the imaging device. A planned periodic maintenance program can identify and eliminate problems with the imaging device before these problems negatively impact patient care

    Astrocytes: biology and pathology

    Get PDF
    Astrocytes are specialized glial cells that outnumber neurons by over fivefold. They contiguously tile the entire central nervous system (CNS) and exert many essential complex functions in the healthy CNS. Astrocytes respond to all forms of CNS insults through a process referred to as reactive astrogliosis, which has become a pathological hallmark of CNS structural lesions. Substantial progress has been made recently in determining functions and mechanisms of reactive astrogliosis and in identifying roles of astrocytes in CNS disorders and pathologies. A vast molecular arsenal at the disposal of reactive astrocytes is being defined. Transgenic mouse models are dissecting specific aspects of reactive astrocytosis and glial scar formation in vivo. Astrocyte involvement in specific clinicopathological entities is being defined. It is now clear that reactive astrogliosis is not a simple all-or-none phenomenon but is a finely gradated continuum of changes that occur in context-dependent manners regulated by specific signaling events. These changes range from reversible alterations in gene expression and cell hypertrophy with preservation of cellular domains and tissue structure, to long-lasting scar formation with rearrangement of tissue structure. Increasing evidence points towards the potential of reactive astrogliosis to play either primary or contributing roles in CNS disorders via loss of normal astrocyte functions or gain of abnormal effects. This article reviews (1) astrocyte functions in healthy CNS, (2) mechanisms and functions of reactive astrogliosis and glial scar formation, and (3) ways in which reactive astrocytes may cause or contribute to specific CNS disorders and lesions
    corecore