83 research outputs found

    Measuring the temperature dependence of individual two-level systems by direct coherent control

    Get PDF
    We demonstrate a new method to directly manipulate the state of individual two-level systems (TLS) in phase qubits. It allows one to characterize the coherence properties of TLS using standard microwave pulse sequences, while the qubit is used only for state readout. We apply this method to measure the temperature dependence of TLS coherence for the first time. The energy relaxation time T1T_1 is found to decrease quadratically with temperature for the two TLS studied in this work, while their dephasing time measured in Ramsey and spin-echo experiments is found to be T1T_1 limited at all temperatures.Comment: 4 pages, 5 figure

    Entangling microscopic defects via a macroscopic quantum shuttle

    Full text link
    In the microscopic world, multipartite entanglement has been achieved with various types of nanometer sized two-level systems such as trapped ions, atoms and photons. On the macroscopic scale ranging from micrometers to millimeters, recent experiments have demonstrated bipartite and tripartite entanglement for electronic quantum circuits with superconducting Josephson junctions. It remains challenging to bridge these largely different length scales by constructing hybrid quantum systems. Doing this may allow for manipulating the entanglement of individual microscopic objects separated by macroscopically large distances in a quantum circuit. Here we report on the experimental demonstration of induced coherent interaction between two intrinsic two-level states (TLSs) formed by atomic-scale defects in a solid via a superconducting phase qubit. The tunable superconducting circuit serves as a shuttle communicating quantum information between the two microscopic TLSs. We present a detailed comparison between experiment and theory and find excellent agreement over a wide range of parameters. We then use the theoretical model to study the creation and movement of entanglement between the three components of the quantum system.Comment: 11 pages, 5 figure

    Quantitative evaluation of defect-models in superconducting phase qubits

    Get PDF
    We use high-precision spectroscopy and detailed theoretical modelling to determine the form of the coupling between a superconducting phase qubit and a two-level defect. Fitting the experimental data with our theoretical model allows us to determine all relevant system parameters. A strong qubit-defect coupling is observed, with a nearly vanishing longitudinal component. Using these estimates, we quantitatively compare several existing theoretical models for the microscopic origin of two-level defects.Comment: 3 pages, 2 figures. Supplementary material, lclimits_supp.pd

    Optical vector network analysis of ultra-narrow transitions in 166^{166}Er3+^{3+}:7^7LiYF4_4

    Full text link
    We present optical vector network analysis (OVNA) of an isotopically purified 166^{166}Er3+^{3+}:7^7LiYF4_4 crystal. The OVNA method is based on generation and detection of modulated optical sideband by using a radio-frequency vector network analyzer. This technique is widely used in the field of microwave photonics for the characterization of optical responses of optical devices such as filters and high-Q resonators. However, dense solid-state atomic ensembles induce a large phase shift on one of the optical sidebands which results in the appearance of extra features on the measured transmission response. We present a simple theoretical model which accurately describes the observed spectra and helps to reconstruct the absorption profile of a solid-state atomic ensemble as well as corresponding change of the refractive index in the vicinity of atomic resonances.Comment: 4 pages, 5 figure

    Strong extinction of a laser beam by a single molecule

    Get PDF
    We present an experiment where a single molecule strongly affects the amplitude and phase of a laser field emerging from a subwavelength aperture. We achieve a visibility of -6% in direct and +10% in cross-polarized detection schemes. Our analysis shows that a close to full extinction should be possible using near-field excitation.Comment: 5 pages, 4 figures, submitted to PR
    • …
    corecore