11 research outputs found
Plasmodium genes responsible for oocyst development and interaction with its Anopheline vector
The transmission of the malaria parasite Plasmodium is governed by a complex
developmental cycle. This PhD thesis describes the transcriptional profiling of the
rodent malaria parasite Plasmodium berghei developmental migration through its A.
gambiae vector. The study was conducted in vivo, using a near complete P. berghei
genome microarray platform. Emphasis was placed on the oocyst stage, as little is
known about the genes implicated in the ookinete to oocyst transition, and oocyst
maturation. The data presented here provide novel transcriptional information about
Plasmodium transmission. The analysis revealed a large shift in gene utilisation as the
parasite makes its transition from the motile ookinete to the sessile oocyst.
Furthermore, this work has shown that different sets of co-regulated genes are
important for early and late oocyst development.
In addition, this PhD thesis outlines the characterisation of a novel Plasmodium
formin-like protein essential for rodent malaria transmission named the male inherited
sporulation factor important for transmission (misfit). MISFIT is expressed in the
early mosquito stages, where the protein localises to the parasite nucleus. Misfit
exhibits an absolute requirement for paternal inheritance, which is in accordance with
an observed male-biased expression pattern. pbmisfitΔ ookinetes display significant
ultrastructural and gene expression defects and fail to complete zygotic meiosis.
However, pbmisfitΔ ookinetes retain functionality and can successfully cross the
midgut epithelial barrier. In contrast, mosquito infections with pbmisfitΔ resulted in an
arrest immediately upon ookinete-oocyst transformation, where defective oocysts fail
to sporulate. An essential role in chromosome segregation during mitosis / meiosis is
postulated for MISFIT. In conclusion, the work presented in this thesis has established
the ookinete-oocyst transition as a major cell cycle check point during malaria
transmission and identified misfit as the first male inherited Plasmodium gene known
to affect development post-fertilisation
CRISPR/Cas9 and genetic screens in malaria parasites : small genomes, big impact
The ∼30 Mb genomes of the Plasmodium parasites that cause malaria each encode ∼5000 genes, but the functions of the majority remain unknown. This is due to a paucity of functional annotation from sequence homology, which is compounded by low genetic tractability compared with many model organisms. In recent years technical breakthroughs have made forward and reverse genome-scale screens in Plasmodium possible. Furthermore, the adaptation of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR-Associated protein 9 (CRISPR/Cas9) technology has dramatically improved gene editing efficiency at the single gene level. Here, we review the arrival of genetic screens in malaria parasites to analyse parasite gene function at a genome-scale and their impact on understanding parasite biology. CRISPR/Cas9 screens, which have revolutionised human and model organism research, have not yet been implemented in malaria parasites due to the need for more complex CRISPR/Cas9 gene targeting vector libraries. We therefore introduce the reader to CRISPR-based screens in the related apicomplexan Toxoplasma gondii and discuss how these approaches could be adapted to develop CRISPR/Cas9 based genome-scale genetic screens in malaria parasites. Moreover, since more than half of Plasmodium genes are required for normal asexual blood-stage reproduction, and cannot be targeted using knockout methods, we discuss how CRISPR/Cas9 could be used to scale up conditional gene knockdown approaches to systematically assign function to essential genes.Instituto de BiotecnologíaFil: Ishizaki, Takahiro. Umeå University. Department of Molecular Biology; SueciaFil: Ishizaki, Takahiro. The Laboratory for Molecular Infection Medicine Sweden (MIMS); SueciaFil: Hernandez, Sophia. Umeå University. Department of Molecular Biology; SueciaFil: Hernandez, Sophia. The Laboratory for Molecular Infection Medicine Sweden (MIMS); SueciaFil: Paoletta, Martina. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Agrobiotecnología y Biología Molecular; ArgentinaFil: Paoletta, Martina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Paoletta, Martina. Umeå University. Department of Molecular Biology; SueciaFil: Paoletta, Martina. The Laboratory for Molecular Infection Medicine Sweden (MIMS); SueciaFil: Sanderson, Theo. Francis Crick Institute; Reino UnidoFil: Bushell, Ellen S. C. Umeå University. Department of Molecular Biology; SueciaFil: Bushell, Ellen S. C. The Laboratory for Molecular Infection Medicine Sweden (MIMS); Sueci
An enhanced toolkit for the generation of knockout and marker-free fluorescent Plasmodium chabaudi.
The rodent parasite Plasmodium chabaudi is an important in vivo model of malaria. The ability to produce chronic infections makes it particularly useful for investigating the development of anti- Plasmodium immunity, as well as features associated with parasite virulence during both the acute and chronic phases of infection. P. chabaudi also undergoes asexual maturation (schizogony) and erythrocyte invasion in culture, so offers an experimentally-amenable in vivo to in vitro model for studying gene function and drug activity during parasite replication. To extend the usefulness of this model, we have further optimised transfection protocols and plasmids for P. chabaudi and generated stable, fluorescent lines that are free from drug-selectable marker genes. These mother-lines show the same infection dynamics as wild-type parasites throughout the lifecycle in mice and mosquitoes; furthermore, their virulence can be increased by serial blood passage and reset by mosquito transmission. We have also adapted the large-insert, linear PlasmoGEM vectors that have revolutionised the scale of experimental genetics in another rodent malaria parasite and used these to generate barcoded P. chabaudi gene-deletion and -tagging vectors for transfection in our fluorescent P. chabaudi mother-lines. This produces a tool-kit of P. chabaudi lines, vectors and transfection approaches that will be of broad utility to the research community
Regulators of male and female sexual development are critical for the transmission of a malaria parasite
Malaria transmission to mosquitoes requires a developmental switch in asexually dividing blood-stage parasites to sexual reproduction. In Plasmodium berghei, the transcription factor AP2-G is required and sufficient for this switch, but how a particular sex is determined in a haploid parasite remains unknown. Using a global screen of barcoded mutants, we here identify genes essential for the formation of either male or female sexual forms and validate their importance for transmission. High-resolution single-cell transcriptomics of ten mutant parasites portrays the developmental bifurcation and reveals a regulatory cascade of putative gene functions in the determination and subsequent differentiation of each sex. A male-determining gene with a LOTUS/OST-HTH domain as well as the protein interactors of a female-determining zinc-finger protein indicate that germ-granule-like ribonucleoprotein complexes complement transcriptional processes in the regulation of both male and female development of a malaria parasite
Plasmodium genes responsible for oocyst development and interaction with its Anopheline vector
The transmission of the malaria parasite Plasmodium is governed by a complex developmental cycle. This PhD thesis describes the transcriptional profiling of the rodent malaria parasite Plasmodium berghei developmental migration through its A. gambiae vector. The study was conducted in vivo, using a near complete P. berghei genome microarray platform. Emphasis was placed on the oocyst stage, as little is known about the genes implicated in the ookinete to oocyst transition, and oocyst maturation. The data presented here provide novel transcriptional information about Plasmodium transmission. The analysis revealed a large shift in gene utilisation as the parasite makes its transition from the motile ookinete to the sessile oocyst. Furthermore, this work has shown that different sets of co-regulated genes are important for early and late oocyst development. In addition, this PhD thesis outlines the characterisation of a novel Plasmodium formin-like protein essential for rodent malaria transmission named the male inherited sporulation factor important for transmission (misfit). MISFIT is expressed in the early mosquito stages, where the protein localises to the parasite nucleus. Misfit exhibits an absolute requirement for paternal inheritance, which is in accordance with an observed male-biased expression pattern. pbmisfitΔ ookinetes display significant ultrastructural and gene expression defects and fail to complete zygotic meiosis. However, pbmisfitΔ ookinetes retain functionality and can successfully cross the midgut epithelial barrier. In contrast, mosquito infections with pbmisfitΔ resulted in an arrest immediately upon ookinete-oocyst transformation, where defective oocysts fail to sporulate. An essential role in chromosome segregation during mitosis / meiosis is postulated for MISFIT. In conclusion, the work presented in this thesis has established the ookinete-oocyst transition as a major cell cycle check point during malaria transmission and identified misfit as the first male inherited Plasmodium gene known to affect development post-fertilisation.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
Recommended from our members
Palmitoyl transferases have critical roles in the development of mosquito and liver stages of Plasmodium.
As the Plasmodium parasite transitions between mammalian and mosquito host, it has to adjust quickly to new environments. Palmitoylation, a reversible and dynamic lipid post-translational modification, plays a central role in regulating this process and has been implicated with functions for parasite morphology, motility and host cell invasion. While proteins associated with the gliding motility machinery have been described to be palmitoylated, no palmitoyl transferase responsible for regulating gliding motility has previously been identified. Here, we characterize two palmityol transferases with gene tagging and gene deletion approaches. We identify DHHC3, a palmitoyl transferase, as a mediator of ookinete development, with a crucial role for gliding motility in ookinetes and sporozoites, and we co-localize the protein with a marker for the inner membrane complex in the ookinete stage. Ookinetes and sporozoites lacking DHHC3 are impaired in gliding motility and exhibit a strong phenotype in vivo; with ookinetes being significantly less infectious to their mosquito host and sporozoites being non-infectious to mice. Importantly, genetic complementation of the DHHC3-ko parasite completely restored virulence. We generated parasites lacking both DHHC3, as well as the palmitoyl transferase DHHC9, and found an enhanced phenotype for these double knockout parasites, allowing insights into the functional overlap and compensational nature of the large family of PbDHHCs. These findings contribute to our understanding of the organization and mechanism of the gliding motility machinery, which as is becoming increasingly clear, is mediated by palmitoylation
Global analysis of apicomplexan protein S-acyl transferases reveals an enzyme essential for invasion
The advent of techniques to study palmitoylation on a whole proteome scale has revealed that it is an important reversible modification that plays a role in regulating multiple biological processes. Palmitoylation can control the affinity of a protein for lipid membranes, which allows it to impact protein trafficking, stability, folding, signalling and interactions. The publication of the palmitome of the schizont stage of Plasmodium falciparum implicated a role for palmitoylation in host cell invasion, protein export and organelle biogenesis. However, nothing is known so far about the repertoire of protein S-acyl transferases (PATs) that catalyse this modification in Apicomplexa. We undertook a comprehensive analysis of the repertoire of Asp-His-His-Cys cysteine-rich domain (DHHC-CRD) PAT family in Toxoplasma gondii and Plasmodium berghei by assessing their localization and essentiality. Unlike functional redundancies reported in other eukaryotes, some apicomplexan-specific DHHCs are essential for parasite growth, and several are targeted to organelles unique to this phylum. Of particular interest is DHHC7, which localizes to rhoptry organelles in all parasites tested, including the major human pathogen P. falciparum. TgDHHC7 interferes with the localization of the rhoptry palmitoylated protein TgARO and affects the apical positioning of the rhoptry organelles. This PAT has a major impact on T. gondii host cell invasion, but not on the parasite's ability to egress
Landscape of the Plasmodium Interactome Reveals Both Conserved and Species-Specific Functionality
Malaria represents a major global health issue, and the identification of new intervention targets remains an urgent priority. This search is hampered by more than one-third of the genes of malaria-causing Plasmodium parasites being uncharacterized. We report a large-scale protein interaction network in Plasmodium schizonts, generated by combining blue native-polyacrylamide electrophoresis with quantitative mass spectrometry and machine learning. This integrative approach, spanning 3 species, identifies > 20,000 putative protein interactions, organized into 600 protein clusters. We validate selected interactions, assigning functions in chromatin regulation to previously unannotated proteins and suggesting a role for an EELM2 domain-containing protein and a putative microrchidia protein as mechanistic links between AP2-domain transcription factors and epigenetic regulation. Our interactome represents a high-confidence map of the native organization of core cellular processes in Plasmodium parasites. The network reveals putative functions for uncharacterized proteins, provides mechanistic and structural insight, and uncovers potential alternative therapeutic targets
A cascade of DNA-binding proteins for sexual commitment and development in Plasmodium
Commitment to and completion of sexual development are essential for malaria parasites (protists of the genus Plasmodium) to be transmitted through mosquitoes1. The molecular mechanism(s) responsible for commitment have been hitherto unknown. Here we show that PbAP2-G, a conserved member of the apicomplexan AP2 (ApiAP2) family of DNA-binding proteins, is essential for the commitment of asexually replicating forms to sexual development in Plasmodium berghei, a malaria parasite of rodents. PbAP2-G was identified from mutations in its encoding gene, PBANKA_143750, which account for the loss of sexual development frequently observed in parasites transmitted artificially by blood passage. Systematic gene deletion of conserved ApiAP2 genes in Plasmodium confirmed the role of PbAP2-G and revealed a second ApiAP2 member (PBANKA_103430, here termed PbAP2-G2) that significantly modulates but does not abolish gametocytogenesis, indicating that a cascade of ApiAP2 proteins are involved in commitment to the production and maturation of gametocytes. The data suggest a mechanism of commitment to gametocytogenesis in Plasmodium consistent with a positive feedback loop involving PbAP2-G that could be exploited to prevent the transmission of this pernicious parasite