18 research outputs found

    A Daple-Akt feed-forward loop enhances noncanonical Wnt signals by compartmentalizing β-catenin.

    Get PDF
    Cellular proliferation is antagonistically regulated by canonical and noncanonical Wnt signals; their dysbalance triggers cancers. We previously showed that a multimodular signal transducer, Daple, enhances PI3-K→Akt signals within the noncanonical Wnt signaling pathway and antagonistically inhibits canonical Wnt responses. Here we demonstrate that the PI3-K→Akt pathway serves as a positive feedback loop that further enhances noncanonical Wnt signals by compartmentalizing β-catenin. By phosphorylating the phosphoinositide- (PI) binding domain of Daple, Akt abolishes Daple's ability to bind PI3-P-enriched endosomes that engage dynein motor complex for long-distance trafficking of β-catenin/E-cadherin complexes to pericentriolar recycling endosomes (PCREs). Phosphorylation compartmentalizes Daple/β-catenin/E-cadherin complexes to cell-cell contact sites, enhances noncanonical Wnt signals, and thereby suppresses colony growth. Dephosphorylation compartmentalizes β-catenin on PCREs, a specialized compartment for prolonged unopposed canonical Wnt signaling, and enhances colony growth. Cancer-associated Daple mutants that are insensitive to Akt mimic a constitutively dephosphorylated state. This work not only identifies Daple as a platform for cross-talk between Akt and the noncanonical Wnt pathway but also reveals the impact of such cross-talk on tumor cell phenotypes that are critical for cancer initiation and progression

    The novel adaptor protein Tks4 (SH3PXD2B) is required for functional podosome formation.

    Get PDF
    Metastatic cancer cells have the ability to both degrade and migrate through the extracellular matrix (ECM). Invasiveness can be correlated with the presence of dynamic actin-rich membrane structures called podosomes or invadopodia. We showed previously that the adaptor protein tyrosine kinase substrate with five Src homology 3 domains (Tks5)/Fish is required for podosome/invadopodia formation, degradation of ECM, and cancer cell invasion in vivo and in vitro. Here, we describe Tks4, a novel protein that is closely related to Tks5. This protein contains an amino-terminal Phox homology domain, four SH3 domains, and several proline-rich motifs. In Src-transformed fibroblasts, Tks4 is tyrosine phosphorylated and predominantly localized to rosettes of podosomes. We used both short hairpin RNA knockdown and mouse embryo fibroblasts lacking Tks4 to investigate its role in podosome formation. We found that lack of Tks4 resulted in incomplete podosome formation and inhibited ECM degradation. Both phenotypes were rescued by reintroduction of Tks4, whereas only podosome formation, but not ECM degradation, was rescued by overexpression of Tks5. The tyrosine phosphorylation sites of Tks4 were required for efficient rescue. Furthermore, in the absence of Tks4, membrane type-1 matrix metalloproteinase (MT1-MMP) was not recruited to the incomplete podosomes. These findings suggest that Tks4 and Tks5 have overlapping, but not identical, functions, and implicate Tks4 in MT1-MMP recruitment and ECM degradation.Peer reviewe

    The GOLPH3 pathway regulates Golgi shape and function and is activated by DNA damage

    Get PDF
    The Golgi protein GOLPH3 binds to PtdIns(4)P and MYO18A, linking the Golgi to the actin cytoskeleton. The GOLPH3 pathway is essential for vesicular trafficking from the Golgi to the plasma membrane. A side effect of GOLPH3-dependent trafficking is to generate the extended ribbon shape of the Golgi. Perturbation of the pathway results in changes to both Golgi morphology and secretion, with functional consequences for the cell. The cellular response to DNA damage provides an example of GOLPH3-mediated regulation of the Golgi. Upon DNA damage, DNA-PK phosphorylation of GOLPH3 increases binding to MYO18A, activating the GOLPH3 pathway, which consequently results in Golgi fragmentation, reduced trafficking, and enhanced cell survival. The PtdIns(4)P/GOLPH3/MYO18A/F-actin pathway provides new insight into the relationship between Golgi morphology and function, and their regulation

    GOLPH3 Links the Golgi, DNA Damage, and Cancer

    No full text

    IFN-gamma AU-rich element removal promotes chronic IFN-gamma expression and autoimmunity in mice

    Get PDF
    We generated a mouse model with a 162 nt AU-rich element (ARE) region deletion in the 3\u27 untranslated region (3\u27UTR) of the interferon-gamma (IFN-γ) gene that results in chronic circulating serum IFN-γ levels. Mice homozygous for the ARE deletion (ARE-Del) (-/-) present both serologic and cellular abnormalities typical of patients with systemic lupus erythematosus (SLE). ARE-Del(-/-) mice display increased numbers of pDCs in bone marrow and spleen. Addition of IFN-γ to Flt3-ligand (Flt3L) treated in vitro bone marrow cultures results in a 2-fold increase in pDCs with concurrent increases in IRF8 expression. Marginal zone B (MZB) cells and marginal zone macrophages (MZMs) are absent in ARE-Del(-/-) mice. ARE-Del(+/-) mice retain both MZB cells and MZMs and develop no or mild autoimmunity. However, low dose clodronate treatment in ARE-Del(+/-) mice specifically eliminates MZMs and promotes anti-DNA antibody development and glomerulonephritis. Our findings demonstrate the consequences of a chronic IFN-γ milieu on B220(+) cell types and in particular the impact of MZB cell loss on MZM function in autoimmunity. Furthermore, similarities between disease states in ARE-Del(-/-) mice and SLE patients suggest that IFN-γ may not only be a product of SLE but may be critical for disease onset and progression

    The Novel Adaptor Protein Tks4 (SH3PXD2B) Is Required for Functional Podosome Formation

    Get PDF
    Metastatic cancer cells have the ability to both degrade and migrate through the extracellular matrix (ECM). Invasiveness can be correlated with the presence of dynamic actin-rich membrane structures called podosomes or invadopodia. We showed previously that the adaptor protein tyrosine kinase substrate with five Src homology 3 domains (Tks5)/Fish is required for podosome/invadopodia formation, degradation of ECM, and cancer cell invasion in vivo and in vitro. Here, we describe Tks4, a novel protein that is closely related to Tks5. This protein contains an amino-terminal Phox homology domain, four SH3 domains, and several proline-rich motifs. In Src-transformed fibroblasts, Tks4 is tyrosine phosphorylated and predominantly localized to rosettes of podosomes. We used both short hairpin RNA knockdown and mouse embryo fibroblasts lacking Tks4 to investigate its role in podosome formation. We found that lack of Tks4 resulted in incomplete podosome formation and inhibited ECM degradation. Both phenotypes were rescued by reintroduction of Tks4, whereas only podosome formation, but not ECM degradation, was rescued by overexpression of Tks5. The tyrosine phosphorylation sites of Tks4 were required for efficient rescue. Furthermore, in the absence of Tks4, membrane type-1 matrix metalloproteinase (MT1-MMP) was not recruited to the incomplete podosomes. These findings suggest that Tks4 and Tks5 have overlapping, but not identical, functions, and implicate Tks4 in MT1-MMP recruitment and ECM degradation
    corecore