7,120 research outputs found

    Tumbleweeds and airborne gravitational noise sources for LIGO

    Full text link
    Gravitational-wave detectors are sensitive not only to astrophysical gravitational waves, but also to the fluctuating Newtonian gravitational forces of moving masses in the ground and air around the detector. This paper studies the gravitational effects of density perturbations in the atmosphere, and from massive airborne objects near the detector. These effects were previously considered by Saulson; in this paper I revisit these phenomena, considering transient atmospheric shocks, and the effects of sound waves or objects colliding with the ground or buildings around the test masses. I also consider temperature perturbations advected past the detector as a source of gravitational noise. I find that the gravitational noise background is below the expected noise floor even of advanced interferometric detectors, although only by an order of magnitude for temperature perturbations carried along turbulent streamlines. I also find that transient shockwaves in the atmosphere could potentially produce large spurious signals, with signal-to-noise ratios in the hundreds in an advanced interferometric detector. These signals could be vetoed by means of acoustic sensors outside of the buildings. Massive wind-borne objects such as tumbleweeds could also produce gravitational signals with signal-to-noise ratios in the hundreds if they collide with the interferometer buildings, so it may be necessary to build fences preventing such objects from approaching within about 30m of the test masses.Comment: 15 pages, 10 PostScript figures, uses REVTeX4.cls and epsfig.st

    Two-Gaussian excitations model for the glass transition

    Full text link
    We develop a modified "two-state" model with Gaussian widths for the site energies of both ground and excited states, consistent with expectations for a disordered system. The thermodynamic properties of the system are analyzed in configuration space and found to bridge the gap between simple two state models ("logarithmic" model in configuration space) and the random energy model ("Gaussian" model in configuration space). The Kauzmann singularity given by the random energy model remains for very fragile liquids but is suppressed or eliminated for stronger liquids. The sharp form of constant volume heat capacity found by recent simulations for binary mixed Lennard Jones and soft sphere systems is reproduced by the model, as is the excess entropy and heat capacity of a variety of laboratory systems, strong and fragile. The ideal glass in all cases has a narrow Gaussian, almost invariant among molecular and atomic glassformers, while the excited state Gaussian depends on the system and its width plays a role in the thermodynamic fragility. The model predicts the existence of first-order phase transition for fragile liquids.Comment: 12 pages, 12 figure

    Structural change of vortex patterns in anisotropic Bose-Einstein condensates

    Get PDF
    We study the changes in the spatial distribution of vortices in a rotating Bose-Einstein condensate due to an increasing anisotropy of the trapping potential. Once the rotational symmetry is broken, we find that the vortex system undergoes a rich variety of structural changes, including the formation of zig-zag and linear configurations. These spatial re-arrangements are well signaled by the change in the behavior of the vortex-pattern eigenmodes against the anisotropy parameter. The existence of such structural changes opens up possibilities for the coherent exploitation of effective many-body systems based on vortex patterns.Comment: 5 pages, 4 figure

    Immunofluorescent Examination of Biopsies from Long-Term Renal Allografts

    Get PDF
    Immunofluorescent examination of open renal biopsies revealed clear-cut glomerular localization of immunoglobulins not related clearly to the quality of donor-recipient histocompatibility in 19 of 34 renal allografts. The biopsies were obtained 18 to 31 months after transplantations primarily from related donors with a variable quality of histocompatibility match. IgG was the predominant immunoglobulin class fixed in 13 biopsies, and IgM in six. The pattern of immunoglobulin deposition was linear, connoting anti-GBM antibody in four of the 19; it was granular and discontinuous, connoting antigen–antibodycomplex deposits, in 13. An immune process may affect glomeruli of renal allografts by mechanisms comparable to those that cause glomerulonephritis in native kidneys. The transplant glomerulonephritis may represent a persistence of the same disease that originally destroyed the host kidneys or the consequence of a new humoral antibody response to allograft antigens. © 1970, Massachusetts Medical Society. All rights reserved

    Low-density, one-dimensional quantum gases in a split trap

    Full text link
    We investigate degenerate quantum gases in one dimension trapped in a harmonic potential that is split in the centre by a pointlike potential. Since the single particle eigenfunctions of such a system are known for all strengths of the central potential, the dynamics for non-interacting fermionic gases and low-density, strongly interacting bosonic gases can be investigated exactly using the Fermi-Bose mapping theorem. We calculate the exact many-particle ground-state wave-functions for both particle species, investigate soliton-like solutions, and compare the bosonic system to the well-known physics of Bose gases described by the Gross-Pitaevskii equation. We also address the experimentally important questions of creation and detection of such states.Comment: 7 pages, 5 figure

    Self-adjoint Lyapunov variables, temporal ordering and irreversible representations of Schroedinger evolution

    Full text link
    In non relativistic quantum mechanics time enters as a parameter in the Schroedinger equation. However, there are various situations where the need arises to view time as a dynamical variable. In this paper we consider the dynamical role of time through the construction of a Lyapunov variable - i.e., a self-adjoint quantum observable whose expectation value varies monotonically as time increases. It is shown, in a constructive way, that a certain class of models admit a Lyapunov variable and that the existence of a Lyapunov variable implies the existence of a transformation mapping the original quantum mechanical problem to an equivalent irreversible representation. In addition, it is proved that in the irreversible representation there exists a natural time ordering observable splitting the Hilbert space at each t>0 into past and future subspaces.Comment: Accepted for publication in JMP. Supercedes arXiv:0710.3604. Discussion expanded to include the case of Hamiltonians with an infinitely degenerate spectru

    Rapid online buffer exchange for screening of proteins, protein complexes and cell lysates by native mass spectrometry

    Get PDF
    It is important to assess the identity and purity of proteins and protein complexes during and after protein purification to ensure that samples are of sufficient quality for further biochemical and structural characterization, as well as for use in consumer products, chemical processes and therapeutics. Native mass spectrometry (nMS) has become an important tool in protein analysis due to its ability to retain non-covalent interactions during measurements, making it possible to obtain protein structural information with high sensitivity and at high speed. Interferences from the presence of non-volatiles are typically alleviated by offline buffer exchange, which is time-consuming and difficult to automate. We provide a protocol for rapid online buffer exchange (OBE) nMS to directly screen structural features of pre-purified proteins, protein complexes or clarified cell lysates. In the liquid chromatography coupled to mass spectrometry (LC-MS) approach described in this protocol, samples in MS-incompatible conditions are injected onto a short size-exclusion chromatography column. Proteins and protein complexes are separated from small molecule non-volatile buffer components using an aqueous, non-denaturing mobile phase. Eluted proteins and protein complexes are detected by the mass spectrometer after electrospray ionization. Mass spectra can inform regarding protein sample purity and oligomerization, and additional tandem mass spectra can help to further obtain information on protein complex subunits. Information obtained by OBE nMS can be used for fast (<5 min) quality control and can further guide protein expression and purification optimization

    Vortex shear effects in layered superconductors

    Full text link
    Motivated by recent transport and magnetization measurements in BSCCO samples [B. Khaykovich et. al., Phys. Rev. B 61, R9261 (2000)], we present a simple macroscopic model describing effects of inhomogeneous current distribution and shear in a layered superconductor. Parameters of the model are deduced from a microscopic calculation. Our model accounts for the strong current non-linearities and the re-entrant temperature dependence observed in the experiment.Comment: 11 pages, 7 figures, submitted to Phys. Rev.
    • …
    corecore