6,938 research outputs found
The 50-horsepower solar-powered irrigation facility located near Gila Bend, Arizona
The 50 horsepower solar powered irrigation facility near Gila Bend, Arizona which includes a Rankine cycle demonstrates the technical feasibility of solar powered pumping. The design of a facility specifically for the irrigation farmer using the technology that has been developed over the last four years is proposed
Boson Pairs in a One-dimensional Split Trap
We describe the properties of a pair of ultracold bosonic atoms in a
one-dimensional harmonic trapping potential with a tunable zero-ranged barrier
at the trap centre. The full characterisation of the ground state is done by
calculating the reduced single-particle density, the momentum distribution and
the two-particle entanglement. We derive several analytical expressions in the
limit of infinite repulsion (Tonks-Girardeau limit) and extend the treatment to
finite interparticle interactions by numerical solution. As pair interactions
in double wells form a fundamental building block for many-body systems in
periodic potentials, our results have implications for a wide range of
problems.Comment: 9 pages, 8 figure
A formal definition and a new security mechanism of physical unclonable functions
The characteristic novelty of what is generally meant by a "physical
unclonable function" (PUF) is precisely defined, in order to supply a firm
basis for security evaluations and the proposal of new security mechanisms. A
PUF is defined as a hardware device which implements a physical function with
an output value that changes with its argument. A PUF can be clonable, but a
secure PUF must be unclonable. This proposed meaning of a PUF is cleanly
delineated from the closely related concepts of "conventional unclonable
function", "physically obfuscated key", "random-number generator", "controlled
PUF" and "strong PUF". The structure of a systematic security evaluation of a
PUF enabled by the proposed formal definition is outlined. Practically all
current and novel physical (but not conventional) unclonable physical functions
are PUFs by our definition. Thereby the proposed definition captures the
existing intuition about what is a PUF and remains flexible enough to encompass
further research. In a second part we quantitatively characterize two classes
of PUF security mechanisms, the standard one, based on a minimum secret
read-out time, and a novel one, based on challenge-dependent erasure of stored
information. The new mechanism is shown to allow in principle the construction
of a "quantum-PUF", that is absolutely secure while not requiring the storage
of an exponentially large secret. The construction of a PUF that is
mathematically and physically unclonable in principle does not contradict the
laws of physics.Comment: 13 pages, 1 figure, Conference Proceedings MMB & DFT 2012,
Kaiserslautern, German
Tumbleweeds and airborne gravitational noise sources for LIGO
Gravitational-wave detectors are sensitive not only to astrophysical
gravitational waves, but also to the fluctuating Newtonian gravitational forces
of moving masses in the ground and air around the detector. This paper studies
the gravitational effects of density perturbations in the atmosphere, and from
massive airborne objects near the detector. These effects were previously
considered by Saulson; in this paper I revisit these phenomena, considering
transient atmospheric shocks, and the effects of sound waves or objects
colliding with the ground or buildings around the test masses. I also consider
temperature perturbations advected past the detector as a source of
gravitational noise. I find that the gravitational noise background is below
the expected noise floor even of advanced interferometric detectors, although
only by an order of magnitude for temperature perturbations carried along
turbulent streamlines. I also find that transient shockwaves in the atmosphere
could potentially produce large spurious signals, with signal-to-noise ratios
in the hundreds in an advanced interferometric detector. These signals could be
vetoed by means of acoustic sensors outside of the buildings. Massive
wind-borne objects such as tumbleweeds could also produce gravitational signals
with signal-to-noise ratios in the hundreds if they collide with the
interferometer buildings, so it may be necessary to build fences preventing
such objects from approaching within about 30m of the test masses.Comment: 15 pages, 10 PostScript figures, uses REVTeX4.cls and epsfig.st
Two-Gaussian excitations model for the glass transition
We develop a modified "two-state" model with Gaussian widths for the site
energies of both ground and excited states, consistent with expectations for a
disordered system. The thermodynamic properties of the system are analyzed in
configuration space and found to bridge the gap between simple two state models
("logarithmic" model in configuration space) and the random energy model
("Gaussian" model in configuration space). The Kauzmann singularity given by
the random energy model remains for very fragile liquids but is suppressed or
eliminated for stronger liquids. The sharp form of constant volume heat
capacity found by recent simulations for binary mixed Lennard Jones and soft
sphere systems is reproduced by the model, as is the excess entropy and heat
capacity of a variety of laboratory systems, strong and fragile. The ideal
glass in all cases has a narrow Gaussian, almost invariant among molecular and
atomic glassformers, while the excited state Gaussian depends on the system and
its width plays a role in the thermodynamic fragility. The model predicts the
existence of first-order phase transition for fragile liquids.Comment: 12 pages, 12 figure
A dilemma in representing observables in quantum mechanics
There are self-adjoint operators which determine both spectral and
semispectral measures. These measures have very different commutativity and
covariance properties. This fact poses a serious question on the physical
meaning of such a self-adjoint operator and its associated operator measures.Comment: 10 page
Confined Quantum Time of Arrivals
We show that formulating the quantum time of arrival problem in a segment of
the real line suggests rephrasing the quantum time of arrival problem to
finding states that evolve to unitarily collapse at a given point at a definite
time. For the spatially confined particle, we show that the problem admits a
solution in the form of an eigenvalue problem of a compact and self-adjoint
time of arrival operator derived by a quantization of the classical time of
arrival, which is canonically conjugate with the Hamiltonian in closed subspace
of the Hilbert space.Comment: Figures are now include
Informationally complete measurements and groups representation
Informationally complete measurements on a quantum system allow to estimate
the expectation value of any arbitrary operator by just averaging functions of
the experimental outcomes. We show that such kind of measurements can be
achieved through positive-operator valued measures (POVM's) related to unitary
irreducible representations of a group on the Hilbert space of the system. With
the help of frame theory we provide a constructive way to evaluate the
data-processing function for arbitrary operators.Comment: 9 pages, no figures, IOP style. Some new references adde
- …