1,363 research outputs found

    Entanglement dynamics of electron-electron scattering in low-dimensional semiconductor systems

    Full text link
    We perform the quantitative evaluation of the entanglement dynamics in scattering events between two insistinguishable electrons interacting via Coulomb potential in 1D and 2D semiconductor nanostructures. We apply a criterion based on the von Neumann entropy and the Schmidt decomposition of the global state vector suitable for systems of identical particles. From the timedependent numerical solution of the two-particle wavefunction of the scattering carriers we compute their entanglement evolution for different spin configurations: two electrons with the same spin, with different spin, singlet, and triplet spin state. The procedure allows to evaluate the mechanisms that govern entanglement creation and their connection with the characteristic physical parameters and initial conditions of the system. The cases in which the evolution of entanglement is similar to the one obtained for distinguishable particles are discussed.Comment: 22 pages, 7 figures, submitted to Physical Review

    Hydroxycarboxylic Acid Receptor 1 and Neuroprotection in a Mouse Model of Cerebral Ischemia-Reperfusion.

    Get PDF
    Lactate is an intriguing molecule with emerging physiological roles in the brain. It has beneficial effects in animal models of acute brain injuries and traumatic brain injury or subarachnoid hemorrhage patients. However, the mechanism by which lactate provides protection is unclear. While there is evidence of a metabolic effect of lactate providing energy to deprived neurons, it can also activate the hydroxycarboxylic acid receptor 1 (HCAR1), a Gi-coupled protein receptor that modulates neuronal firing rates. After cerebral hypoxia-ischemia, endogenously produced brain lactate is largely increased, and the exogenous administration of more lactate can decrease lesion size and ameliorate the neurological outcome. To test whether HCAR1 plays a role in lactate-induced neuroprotection, we injected the agonists 3-chloro-5-hydroxybenzoic acid and 3,5-dihydroxybenzoic acid into mice subjected to 30-min middle cerebral artery occlusion. The in vivo administration of HCAR1 agonists at reperfusion did not appear to exert any relevant protective effect as seen with lactate administration. Our results suggest that the protective effects of lactate after hypoxia-ischemia come rather from the metabolic effects of lactate than its signaling through HCAR1

    Spatio-temporal overview of neuroinflammation in an experimental mouse stroke model.

    Get PDF
    After ischemic stroke, in the lesion core as well as in the ischemic penumbra, evolution of tissue damage and repair is strongly affected by neuroinflammatory events that involve activation of local specialized glial cells, release of inflammatory mediators, recruiting of systemic cells and vascular remodelling. To take advantage of this intricate response in the quest to devise new protective therapeutic strategies we need a better understanding of the territorial and temporal interplay between stroke-triggered inflammatory and cell death-inducing processes in both parenchymal and vascular brain cells. Our goal is to describe structural rearrangements and functional modifications occurring in glial and vascular cells early after an acute ischemic stroke. Low and high scale mapping of the glial activation on brain sections of mice subjected to 30 minutes middle cerebral artery occlusion (MCAO) was correlated with that of the neuronal cell death, with markers for microvascular changes and with markers for pro-inflammatory (IL-1β) and reparative (TGFβ1) cytokines. Our results illustrate a time-course of the neuroinflammatory response starting at early time-points (1 h) and up to one week after MCAO injury in mice, with an accurate spatial distribution of the observed phenomena

    Physical realizations of quantum operations

    Full text link
    Quantum operations (QO) describe any state change allowed in quantum mechanics, such as the evolution of an open system or the state change due to a measurement. We address the problem of which unitary transformations and which observables can be used to achieve a QO with generally different input and output Hilbert spaces. We classify all unitary extensions of a QO, and give explicit realizations in terms of free-evolution direct-sum dilations and interacting tensor-product dilations. In terms of Hilbert space dimensionality the free-evolution dilations minimize the physical resources needed to realize the QO, and for this case we provide bounds for the dimension of the ancilla space versus the rank of the QO. The interacting dilations, on the other hand, correspond to the customary ancilla-system interaction realization, and for these we derive a majorization relation which selects the allowed unitary interactions between system and ancilla.Comment: 8 pages, no figures. Accepted for publication on Phys. Rev.

    Information-Disturbance Tradeoff in Quantum State Discrimination

    Get PDF
    When discriminating between two pure quantum states, there exists a quantitative tradeoff between the information retrieved by the measurement and the disturbance caused on the unknown state. We derive the optimal tradeoff and provide the corresponding quantum measurement. Such an optimal measurement smoothly interpolates between the two limiting cases of maximal information extraction and no measurement at all.Comment: 5 pages, 2 (low-quality) figures. Eq. (20) corrected. Final published versio

    Improving information/disturbance and estimation/distortion trade-offs with non universal protocols

    Get PDF
    We analyze in details a conditional measurement scheme based on linear optical components, feed-forward loop and homodyne detection. The scheme may be used to achieve two different tasks. On the one hand it allows the extraction of information with minimum disturbance about a set of coherent states. On the other hand, it represents a nondemolitive measurement scheme for the annihilation operator, i.e. an indirect measurement of the Q-function. We investigate the information/disturbance trade-off for state inference and introduce the estimation/distortion trade-off to assess estimation of the Q-function. For coherent states chosen from a Gaussian set we evaluate both information/disturbance and estimation/distortion trade-offs and found that non universal protocols may be optimized in order to achieve better performances than universal ones. For Fock number states we prove that universal protocols do not exist and evaluate the estimation/distortion trade-off for a thermal distribution.Comment: 10 pages, 6 figures; published versio

    Carrier-carrier entanglement and transport resonances in semiconductor quantum dots

    Get PDF
    We study theoretically the entanglement created in a scattering between an electron, incoming from a source lead, and another electron bound in the ground state of a quantum dot, connected to two leads. We analyze the role played by the different kinds of resonances in the transmission spectra and by the number of scattering channels, into the amount of quantum correlations between the two identical carriers. It is shown that the entanglement between their energy states is not sensitive to the presence of Breit-Wigner resonances, while it presents a peculiar behavior in correspondence of Fano peaks: two close maxima separated by a minimum, for a two-channel scattering, a single maximum for a multi-channel scattering. Such a behavior is ascribed to the different mechanisms characterizing the two types of resonances. Our results suggest that the production and detection of entanglement in quantum dot structures may be controlled by the manipulation of Fano resonances through external fields.Comment: 8 pages, 6 figures, RevTex4 two-column format, submitte

    Global information balance in quantum measurements

    Full text link
    We perform an information-theoretical analysis of quantum measurement processes and obtain the global information balance in quantum measurements, in the form of a closed chain equation for quantum mutual entropies. Our balance provides a tight and general entropic information-disturbance trade-off, and explains the physical mechanism underlying it. Finally, the single-outcome case, that is, the case of measurements with post-selection, is briefly discussed.Comment: Final version to appear on Physical Review Letter
    corecore