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We study theoretically the entanglement created in a scattering between an electron, incoming from a source
lead, and another electron bound in the ground state of a quantum dot, connected to two leads. We analyze the
role played by the different kinds of resonances in the transmission spectra and by the number of scattering
channels, into the amount of quantum correlations between the two identical carriers. It is shown that the
entanglement between their energy states is not sensitive to the presence of Breit-Wigner resonances, while it
presents a peculiar behavior in correspondence to Fano peaks: two close maxima separated by a minimum for
a two-channel scattering and a single maximum for a multichannel scattering. Such a behavior is ascribed to
the different mechanisms characterizing the two types of resonances. Our results suggest that the production
and detection of entanglement in quantum dot structures may be controlled by the manipulation of Fano
resonances through external fields.
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I. INTRODUCTION

Quantum entanglement, as one of the most spectacular
features of quantum mechanics contrasting with classical
physics,1 has been widely investigated in the last decades,
mainly because it is recognized as a crucial resource for
quantum information processing and quantum
communication.2 It is therefore a problem of great interest to
find physical systems where the entanglement can be pro-
duced, manipulated, and detected. Recently, there have been
different proposals to produce entangled states, such as those
based on atomic systems,3 quantum electrodynamics
cavities,4 and solid state devices.5–10 Among the systems pro-
posed for the realization of quantum information processing
devices, those constructed with semiconductor quantum dots
�QDs� are extremely promising due mainly to the controlla-
bility of their quantum state.11–13 Indeed, semiconductor QDs
possess many desirable features: an atomiclike structure that
can be fully controlled by an external electrostatical poten-
tial, a tunable coupling to source and drain leads, which
makes the integration with other microelectronics devices
feasible, and the scalability, which seems to promise sophis-
ticated engineering of the multi-QD structures.

QDs represent also an ideal laboratory to compare exact
numerical simulations of the quantum transport phenomena
with experiments, since the number of degrees of freedom
involved is often small and the discreteness of QD states
highly reduces the computational burden needed. Various ef-
fects such as the conductance quantization,14 the Coulomb
blockade due to the electron repulsion,15 the interplay be-
tween resonances and the charging in QD structures16,17

strongly affect the transport properties. Another peculiar fea-
ture of the electron transmission through QDs is the partial
retention of quantum coherence,18 whose measurement, by
experimental setups exploiting quantum interference �e.g.,
with a QD embedded in an Aharonov-Bohm interferometer�,
may yield information about transport phenomena, not
readily available from conductance measures.19–21

In the frame of quantum transport in semiconductors, the-
oretical and experimental investigations have revealed other

mechanisms governing the electronic transmission through
QD structures. In particular, it has been observed that two
kinds of resonances can be present in conductance spectra,
known as Fano and Breit-Wigner resonances.22–26 The form-
ers are present when two transmission channels, a resonant
one and a nonresonant one, interfere.27 Moreover, they ex-
hibit typical asymmetrical line shapes, with the transmitted
phase increasing by � on the resonance peak and then drop-
ping abruptly. The latter show a symmetric line shape28 and
are observed when only one channel is involved in the scat-
tering process.

In this paper, we address the problem of entanglement
generation in a two-particle scattering in a QD structure. We
analyze, in particular, the role played by some mechanisms
of charge transport in the appearance of quantum correla-
tions. To this aim, we consider a scattering event in a one-
dimensional �1D� double-barrier resonant tunneling device
�that mimics the confining potential of the QD�, with an elec-
tron incoming from one lead and another electron bound in
the ground state of the QD. The two particles feel the con-
fining potential inside the device and interact through the
Coulomb repulsion. Indeed, carrier-carrier entanglement has
been recently investigated in various QD structures8,10,29–33

where different scattering setups are considered for the gen-
eration of two-electron entangled states. In the present work,
we adopt a time-independent few-particle approach that, al-
though computationally demanding, can be solved numeri-
cally to obtain the exact modulus and phase of the transmis-
sion coefficient �TC� of an electron crossing the charged QD.
This gives us the possibility to quantify the quantum corre-
lation between the energy states of the scattered electron and
the bound one and to expose its connection with the reso-
nances exhibited by the TCs of the various scattering chan-
nels. Unlike previous works,8,33 the few-particle approach we
use in this paper allows us to study the relation between the
different kinds of resonances, or the number of energy levels
available, with the entanglement formation. Even if the dy-
namics of carriers has been considered as 1D, we can assume
that the results obtained describe a general behavior concern-
ing also quantum transport in two-dimensional �2D� and
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three-dimensional physical systems, with the appearance of
quantum correlations being closely related to the nature of
transport resonances, whose underlying mechanisms are in-
dependent of the dimensionality of the system.

The paper is organized as follow. In Sec. II, we describe
the physical model and the numerical approach adopted to
calculate the two-particle scattering state and the quantum
correlations in terms of the von Neumann entropy. In Sec.
III, we present the numerical results obtained for the en-
tanglement in the case of two different kinds of processes,
namely, two- and multichannel scattering.43 Finally, in Sec.
IV, we comment on the results, draw final remarks, and point
out issues that require further research.

II. PHYSICAL MODEL AND THE NUMERICAL
APPROACH

Our aim is to evaluate the entanglement between the en-
ergy states of two electrons, interacting via the Coulomb
potential, one bound in a QD and the other passing through
it. Here, we summarize the physical model adopted for the
open QD and the numerical approach used to evaluate the
two-particle scattering state and the entanglement.

We consider a quasi-1D double-barrier resonant tunneling
device such as, for example, the ones formed by material
modulation in a ultrathin cylindrical nanowire.34 The trans-
versal dimensions of the structure are small compared to the
other length scales so that a single transversal subband is
accessible to the carriers and the effective dynamics can be
considered 1D.35 Two small potential barriers separate the
QD region from the two contacts, as depicted in Fig. 1�a�.
The N bound states and energies of the QD will be indicated
as �n and En �with n=0,1 , . . . ,N in order of increasing en-
ergy�, respectively.

A single electron is in the QD ground state �0, whereas a
second electron is incoming from the left lead with energy
EIN, and it is scattered by the structure potential Vs and by the
Coulomb interaction with the bound particle. The potential
Vs is supposed to be constant outside the region of interest of
length � and, without loss of generality, it is taken to be zero
in both left and right contacts. We will consider only cases in
which the energy of the incoming electron is not sufficient to
ionize the QD, i.e., �EIN+E0��0. This means that when an
electron leaves the scattering region, either reflected or trans-
mitted, the other one is in a bound state of the QD. Further-
more, we stress that in our system, the charging energy of the
QD is much larger than the spacing between the single-
particle energy levels. For this reason, our system operates
always in the two-particle regime. We do not include other
carriers in our calculations.

The two-particle Hamiltonian reads

H�x1,x2� = −
�2

2m*�1
2 −

�2

2m*�2
2 + Vs�x1� + Vs�x2�

+
e2

4����x1 − x2�2 + d2
, �1�

where m* and � are the electron effective mass and the di-
electric constant of the material, respectively. In particular,
the calculations presented in this paper have been performed
using GaAs material parameters. The Coulomb term includes
the thickness, a cutoff term d that can be assumed to corre-
spond roughly to the lateral dimension of the confinement.35

The spin degree of freedom does not enter into our calcula-
tion since we neglect spin-orbit coupling.44. As a conse-
quence of the fermionic nature of the system we impose
antisymmetrization constraints under particle exchange to
the wave function ��x1 ,x2�. This is done by adopting anti-
symmetric boundary conditions as briefly described in the
following and detailed in Ref. 25.

The two-particle scattering state is obtained by solving the
time-independent open-boundary Schrödinger equation H�
=E� in the 2D domain of interest. To this aim, we have used
a numerical approach based on a generalization of the widely
used quantum transmitting boundary method.36 It allows us
to include proper open-boundary conditions and simulate the
scattering of one electron by a charge confined in a QD.25 In
particular, here we need four boundary conditions, one for
each edge of the square domain. Since we have to impose
exchange symmetry to ��x1 ,x2�, they are equal in couples,
apart from the sign. In fact, the form of the wave function
when particle 1 is in the left lead �x1�0� is

���x1,x2���x1�0� = �0�x2�eik0x1

+ �
n=0

M

bn�n�x2�e−iknx1 �
n=M+1

	

bn�n�x2�eknx1,

�2�

and when it is particle 2, the one in the left lead, the bound-
ary condition is ���x1 ,x2���x2�0�= �−��x2 ,x1���x2�0�. For the
other two boundaries, namely, the conditions �x1
�� and
�x2
��, it holds that
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FIG. 1. �Color online� �b� TC as a function of the initial energy
of the incoming electron EIN. The solid line represents the modulus
of the TC and refers to the left ordinate axis; the dashed line rep-
resents the phase of TC and refers to the right axis. �a� Profile of the
potential V�x� in the scattering region: the potential well is
150 meV deep and 80 nm wide and is connected to the leads
through two 10 nm barriers of 30 meV. �c� Zoom of the TC modu-
lus and phase for EIN�0.3 meV where a Fano resonance occurs.
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���x1,x2���x1
�� = �
n=0

M

cn�n�x2�eiknx1 + �
n=M+1

	

cn�n�x2�e−knx1

�3�

and ���x1 ,x2���x2
��= �−��x2 ,x1���x2
��, respectively.
Let us now describe the above expressions. We first define

Tn=EIN+E0−En as the energy of an electron freely propagat-
ing in the lead when the other one is bound in �n �a conse-
quence of energy conservation�, and kn=�2m*�Tn� /�. The
right hand side of Eq. �2� �for the left boundary� is the sum
of three terms. The first one represents an electron incoming
as a plane wave with energy EIN=�2k0

2 /2m*, while the other
electron is in the QD ground state �0. The second term ac-
counts for all the energy-allowed possibilities with one elec-
tron bound in the �n state, and the other one reflected in the
left lead, with wave vector kn. M is the number of states for
which Tn is positive. The third term accounts for the cases
Tn�0, representing the electron in the lead as an evanescent
wave. The right hand side of Eq. �3� �for the right boundary�
has only two terms, since the probability amplitude of a car-
rier incoming from the right lead is zero in our system. The
first term represents the M energy-allowed possibilities of an
electron transmitted and freely propagating in the right lead
and the second term includes the outgoing-particle evanes-
cent waves, as in Eq. �2�. The reflection and transmission
amplitudes in the various energy levels, bn and cn, respec-
tively, are unknown and are obtained by solving the
Schrödinger equation with H�x1 ,x2� given by Eq. �1� and
with the two-particle energy E=EIN+E0, imposing the two
boundary conditions of Eqs. �2� and �3�.

In order to describe the mechanisms characterizing the
charge transport through a QD, and the kind of resonances
showing up in transmission spectra, we report in Fig. 1 the
modulus and phase of the TC as a function of the initial
energy of the incoming electron, for a given configuration of
the potential sketched in panel �a�. In particular, we consider
a width L of the potential well of 80 nm with a depth h of
150 meV. In this case, we have a single-channel scattering,
i.e., the scattered particle can have a single energy, while the
bound one is always left in the ground state of the QD well.
When EIN is around 1.5 meV, the TC shows a Breit-Wigner
resonance, as shown in panel �b�.28 As it is well known, such
kinds of resonances stem from the coupling of a quasibound
state to the scattering states in the leads and present, a
Lorentzian line shape whose amplitude c0 is described by the
expression c0=C�i� /2� / �EIN−Eqb+ i� /2�, where C is a com-
plex constant and � the width of the resonance, inversely
proportional to the lifetime of the quasibound state with en-
ergy Eqb. In particular, as we can see from Fig. 1�b�, the TC
modulus �solid line� goes to 1 with a symmetric Lorentzian
peak around the energy resonance, while the transmission
phase �dashed line� smoothly changes by �. In addition to
the above resonance, two extremely sharp resonances, for
EIN around 0.3 and 0.6 meV are present. They are the so-
called Fano resonances �with asymmetric line shape�, which
can be ascribed to an effect brought about by electron-
electron correlation.27 In fact, they originate from the inter-
ference of two alternative scattering mechanisms.23,25 In the

first one, the injected particle gives part of its energy to the
bound one, thus creating an autoionizing27 state where the
two electrons are in two excited bound states of the QD; then
one of the particles decays to the ground state and releases
back its energy to the second one that is emitted. In the
second mechanism, the electron entering the QD is scattered
by the sum of the QD confining potential and the Coulomb
repulsion with the bound particle. In both cases, Coulomb
interaction plays an active role, with a remarkable difference:
While in the second mechanism it represents simply a modi-
fication of the resonant energy, the first mechanism would
not be possible without it. In fact, when the Coulomb poten-
tial is switched off, Fano resonances disappear, since only
one scattering mechanism is now possible.

In order to give a better insight into their properties, we
have reported in the top panel �c� a zoom of the modulus and
phase of the TC at an initial energy of the incoming electron
EIN around 0.3 meV. Here, the modulus reaches 1 and then
goes to zero, showing the typical asymmetric Fano line
shape. The transmission phase increases smoothly by � on
the resonance peak but shows an abrupt drop of � in corre-
spondence to the zero of the transmission probability.37 We
stress that the curves in Fig. 1 correspond to a single-channel
two-particle scattering, with the energy of the transmitted
electron fixed by the boundary conditions. As a consequence,
no entanglement is generated between the two electrons here.
The more interesting cases of two- and multichannel scatter-
ing will be presented in the following section.

In the last part of this section, we describe the procedure
we adopt to evaluate the entanglement. In fact, as a conse-
quence of the scattering, quantum correlations appear be-
tween the energy levels En of the electron bound in the po-
tential well and the energies Tn of the scattered electron
allowed by energy conservation. Such an entanglement may
be evaluated from the transmitted component of the two-
particle wave function in the right lead, given by Eq. �3�.
Obviously only the traveling components, with n�M in the
right hand side of Eq. �3�, must be considered, since they are
the only ones giving a nonvanishing contribution to the cur-
rent and also the only ones that could be revealed by mea-
suring the energy of the electron propagating in the right
lead. On the other hand, the evanescent component of the
wave function plays no direct role in the appearance of de-
tectable quantum correlations. In this case, a good entangle-
ment measure is given by the von Neumann entropy of the
reduced density matrix red, obtained by tracing the two-
particle density matrix = ��tr���tr� / ��tr ��tr� over the de-
grees of freedom of one of the particles,38 where ��x1 ,x2�tr

=�n=0
M cn�n�x2�eiknx1.
red will be a �M +1�� �M +1� diagonal matrix defined as

red = diag	�c̃0�2, . . . , �c̃n�2, . . . , �c̃M�2
 , �4�

with

c̃n =
cn

��
n=0

M

�cn�2
. �5�

Thus, the entanglement can be expressed by means of the
von Neumann entropy as
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� = − Tr	red ln red
 = − �
n=0

M

�c̃n�2 ln �c̃n�2. �6�

� is bound in the interval 	0, ln�M +1�
, with �=0 indicating
no entanglement and �=ln�M +1� indicating a maximally en-
tangled state. As shown in previous works, the von Neumann
entropy allows us to quantify the quantum correlations in-
duced by the Coulomb interaction. In fact, if noninteracting
electrons are considered, only one transmission channel is
active, and, as a consequence, the von Neumann entropy
results to be zero. We stress that, unlike other works estimat-
ing the quantum correlation in QDs,8,33 we are not consider-
ing the transmitted and reflected components of the scatter-
ing wave function as two different states that can be
entangled with the QD. We estimate the entanglement be-
tween the dot and the transmitted electron. In fact, in our
approach, the measure of the entanglement created in the
system, evaluated by means of Eq. �6�, is not explicitly given
in terms of the device transmission and reflection coeffi-
cients, but it is a function of the amplitude probabilities of
finding the transmitted particle in one of the possible energy
states. Furthermore, it is worth noting that, although we do
not use explicitly the criteria developed to treat the entangle-
ment of identical particles,5,39,40 the electrons in our system
are fully indistinguishable. Nevertheless, since the energy of
the incoming electron is not sufficient to ionize the QD, we
may safely assume that the scattered particle is far enough
from the one left in a bound state of the dot so that the
overlap between their spatial probabilities is negligible. In
other words, we use the spatial position of the electrons to
“distinguish” them, while the entanglement is between their
energy states, as suggested in Ref. 41.

III. NUMERICAL RESULTS

In this section, we analyze the entanglement formation in
a two- or multichannel scattering and its relation to the reso-
nances in the TCs. In particular, it is of interest to study how
the entanglement depends on the kind of resonances, since
the detection of the latter, usually feasible through a current-
voltage characteristic of the quantum device, can give infor-
mation about the former. In our approach, we solve numeri-
cally the system for different potentials V�x� �obtained by
varying the depth h and the width L of the well� and for
different initial energies of the incoming electron EIN.

In panel �a� of Fig. 2, we report the entanglement � of the
system as a function of the initial energy of the incoming
electron and of the depth of the potential well, whose width
is kept constant at L=40 nm. The entanglement presents ex-
tremely sharp peaks that, as we shall see, correspond to the
resonances exhibited by the TCs of the various channels.
From the 2D representation of the same data, displayed in
Fig. 2�b�, we observe that the maxima of the entanglement
spread in the region corresponding to a three-channel scat-
tering, which is separated by the dashed line from the one
where the number of active channels is 2. This suggests us
that also the kind of process, i.e., two- or multichannel scat-
tering, plays an important role into the entanglement forma-

tion. The two cases will be better analyzed in the following
sections.

A. Two-channel scattering

Here, we study the creation of the entanglement when the
incident particle, as a consequence of the scattering with the
particle bound in the QD, is transmitted with two possible
energies, T0 and T1, and, correspondingly, the final QD en-
ergy can be E0 and E1.

In the top panel of Fig. 3, we report the entanglement as a
function of the kinetic energy of the incoming particle for the
potential sketched in the inset of the figure. In particular, we
consider a width of the potential well of 30 nm and a depth
of 110 meV. At low energies, the scattering does not lead to
the appearance of quantum correlations between the two par-
ticles, since only a single channel is possible for the trans-
mission. It is therefore possible to attribute a specific energy
to each particle: T0 for the scattered electron and E0 for the
bound one. When EIN reaches a threshold value of about
14 meV, a new channel comes into play as it can be seen
from the bottom panel of Fig. 3. There, the dependence of
the modulus of the TC is reported as a function of the initial
energy of the incoming electron. In correspondence to the
energy at which the second channel is activated, the en-
tanglement shows a sharp increase.

By comparing the two panels in Fig. 3, it is clear that the
resonances of the TCs play a key role in the entanglement
formation. In particular, the behavior shown by the entangle-
ment in correspondence to a Fano resonance is very different

FIG. 2. �Color online� �a� Entanglement � as a function of the
initial energy of the incoming electron EIN and of the depth of the
potential well of 40 nm. �b� 2D contour plot of the same data; the
dashed line is a guide for the eyes and separates the zone corre-
sponding to two-channel scattering �left� from the one correspond-
ing to a three-channel scattering �right�. �c� Modulus of TC of the
three channels as a function of EIN with h fixed at −100.5 meV.
Note that channel 2 is activated only at EIN�21 meV.
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from the one exhibited at a Breit-Wigner resonance. When
EIN is around 15 meV, a Fano resonance of the TC is ob-
served for channel 0. To better understand this phenomenon,
we report in the top panel of Fig. 4 a zoom of the curves of
modulus and phase �the latter was not shown in Fig. 3 for
clarity� of the TCs of the two channels. It is worth noting
that, unlike the case of the single-channel scattering, here the
modulus of the TC attains small but nonzero values before
the maximum, which, in turn, results to be significantly
lower than 1. The TC of channel 1 shows, in correspondence
to the Fano resonance of channel 0, a Breit-Wigner reso-
nance characterized by a phase change of about �. In the
energy interval around 15 meV, the behavior of the quantum
correlations, appearing in the systems as a consequence of
the scattering, is peculiar �see the top panel of Fig. 4�. In fact,
when the modulus of the TC of channel 0 reaches its lowest
value, the entanglement curve presents a minimum. Such a
minimum is placed between two very close maxima, where
the entanglement �evaluated, as usual, by means of the von
Neumann entropy of the reduced density matrix� is equal to
ln 2. This value indicates the condition of maximal entangle-
ment in a two-channel scattering. Such a condition is reached
when �c0�2 and �c1�2, i.e., the probabilities that the scattering
occurs through the channel 0 or 1, respectively, are equal,
and it implies that the lack of knowledge about the state in
the one-particle subspace is maximum. We also report, in the
top panel of the Fig. 4 �dashed line�, the ratio of the two
transmission probabilities: the entanglement is maximum
when the scattering probabilities in the two channels are the
same, as indicated by the horizontal dotted line drawn as a
guide for the eyes. What we found here is in agreement with

previous analyses on the two-electron entanglement produc-
tion in two-electron systems for a two-channel scattering
model, where both particles are injected in only one of two
leads.8,33 In fact, also in those cases, the entanglement shows
a maximum when the transmission probabilities for the two
channels are identical, while it vanishes in correspondence to
the single-particle resonances, where there is no uncertainty
about the energy of the particle.

Figure 3 shows that the TC of channel 0 presents a Breit-
Wigner resonance for EIN�17.5 meV. Even if the modulus
of the TC becomes equal to 1, the entanglement curve does
not display maxima or minima. This is due to the fact that
the Breit-Wigner resonance of the TC of channel 0 does not
influence the TC of channel 1, which does not show, at the
specific energy, resonances of any kind. Therefore, the scat-
tering phenomena taking place in the energy interval around
17.5 meV do not play a special role into entanglement for-
mation of the two-particle system. Such a behavior is in
agreement with the one observed in other works, showing
that the maximal value of the conductance does not always
correspond to the maximal entanglement.30

B. Multichannel scattering

Let us consider now the case of a multichannel scattering
�the scattered particle can leave the QD with more than two
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energies� and let us investigate the different roles played by
the Fano and Breit-Wigner resonances in the entanglement
formation.

Here, we consider a potential well 150 meV deep and
40 nm wide, as reported in the inset of Fig. 5. For EIN around
21 meV, the scattering passes from a two-channel to a three-
channel process, and this transition is characterized by a
sharp increase of the entanglement. The same behavior is
found at EIN=40 meV, where an additional transmission
channel is switched on �see Fig. 5�. This is in agreement with
the results of the previous section and may be considered
representative of a more general behavior, occurring when-
ever a new channel becomes effective in the scattering pro-
cess.

The quantum correlations appearing in the system, as a
consequence of a multichannel scattering, for the energy val-
ues around a Fano resonance show some differences with
respect to the two-channel process. In Fig. 6, we report the
curves of the entanglement and, in the insets, the modulus
and phase of the TCs of the three channels �0, 1, 2 from top
to bottom� against EIN, in the energy region around EIN
=27.5 meV, where a Fano resonance occurs for channel 0. In
fact, we observe, from the uppermost inset, that also in this
case the modulus of the TC has a local minimum before
reaching the maximum. The type of resonances of channels 1
and 2 �middle and bottom insets� cannot be clearly identified
by the module of their transmission coefficients, whose
peaks are almost symmetric. However, it is clear for the
transmission phases that channel 1 exhibits a Fano reso-
nance, with the phase essentially unchanged through the
peak, while channel 2 shows a Breit-Wigner resonance, with
a global phase variation of �. We stress that, unlike the two-
channel scattering case, here the entanglement does not show

a minimum. Such a behavior can be ascribed to the fact that,
when the modulus of the TC of channel 0 is small, the TCs
of the other two channels attain values comparable to each
other. This means that the probabilities of finding the scat-
tered particles in those channels are almost equal, and there
is still a lack of knowledge about the state of the one-particle
subsystem. Furthermore, we note that here the entanglement
presents a single maximum whose value exceeds ln 2. Actu-
ally, the fact that the number of degrees of freedom is larger
than 2 increases the uncertainty about the constituents of the
system; in fact, Eq. �6� gives a maximum value for the
amount of quantum correlations that is larger for a larger
number of possible states. For example, a system of two
qutrits is able to attain a larger value of � than a two-qubit
system.45 The ability to tailor not only the degree of the
entanglement but also the number of possible states of the
two subsystems, by independently tuning EIN and the QD
confining potential, could also have implications beyond the
theoretical estimation of the entanglement. The behavior de-
scribed above is repeated at EIN�50 meV, where two Fano
resonances occur for the second and third channels in a four-
channel scattering �Fig. 5�. It is worth noting that, in corre-
spondence to a Breit-Wigner resonance in channel 0 for
EIN=25 meV, no additional resonance occurs in the other
channels and the entanglement does not present maxima or
minima as it can be clearly seen from the upper panel of Fig.
5. Therefore, also in the case of multichannel processes, the
Breit-Wigner resonance seems not to induce sharp variations
of �.

IV. CONCLUSIONS

The controlled production and detection of entangled par-
ticles in the solid state environment represents an experimen-
tal challenge. In this spirit, various proposals for producing
bipartite entangled fermionic systems have been advanced,
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on the basis of different physical mechanisms requiring a
direct interaction between particles.5,7–10,33 In this paper, we
have investigated the quantum correlations appearing, as a
consequence of a Coulomb scattering, between two electrons
having the same spin, in a system of physical interest, where
the degree of the entanglement results to be controllable by a
proper tuning of the carrier energy and of the QD potential.
Such a system consists of a quasi-1D double-barrier resonant
tunneling device, where an electron incoming from one lead
is scattered by the potential structure and, via the Coulomb
interaction, by another electron bound in the QD.

The numerical procedure used to solve the model is a
generalization of the quantum transmitting boundary
method.25,36 It permits us to obtain the reflection and trans-
mission amplitudes of each scattering channel, for various
configurations of the potential, as a function of the initial
energy of the incoming electron. However, we stress that,
unlike the approaches followed by Lopez et al.33 and by
Oliver et al.,8 here we did not use the reflected component of
the scattered electron wave function to evaluate the entangle-
ment of the two-particle system, but we estimated the quan-
tum correlations showing up between the QD eigenstates and
the transmitted parts of the electron wave function. Further-
more, this procedure makes it possible to investigate the role
played by the resonances of the transmission spectra into the
entanglement. Although our numerical analysis has been per-
formed by using the GaAs material parameters, they can be
considered representative of a more general behavior.

Our simulations show that the entanglement depends on
the kind of the resonance appearing in the transmission spec-
trum. A single Breit-Wigner resonance is found not to induce
peculiar effects on quantum correlations. On the contrary, in
correspondence to a Fano resonance of one of the TCs, not
only the other channels TCs exhibit local maxima, but also
the entanglement presents sharp peaks. Such a behavior can
be related to the nature of the resonances themselves. In fact,
a Breit-Wigner resonance is essentially a one-particle effect,
showing up also in a single-electron scattering. On the other
hand, a Fano resonance is, in our 1D system, a genuine mul-
tiparticle phenomenon, due to electron-electron correlation.
In fact, if Coulomb interaction is switched off, Fano reso-
nances disappear from the transmission spectrum. We note

that in different systems, with higher dimensionality, Fano
resonances can occur due to the interference of two single-
particle transmission channels, as, for example, in a two-
dimensional QD or in a two-path interferometer. Thus, the
presence of an asymmetric Fano line shape is a true signature
of particle-particle correlation only in 1D systems.

Furthermore, we showed that the appearance of quantum
correlations in our system is also affected by the number of
the transmission channels, i.e., the number of possible energy
levels of the scattered particle �and, due to the energy con-
servation, of the bound particle�. In fact, the entanglement
shows a sharp increase whenever a new channel is turned on.
Moreover, its behavior for energy values around a Fano reso-
nance is found to depend on the kind of process: two- or
multichannel scattering. For the two-channel case, the en-
tanglement presents a minimum between two close maxima,
which indicate the maximal uncertainty about the state of the
system. In the multichannel case, a single maximum of the
entanglement, with no minima, is observed. When the energy
levels of the scattered and bound electrons are only 2, the
minimum of the entanglement is found in correspondence to
the local minimum of the TC of the Fano resonant channel.
In this case, it maximizes the possibility to ascribe specific
energy states to the subsystems. On the other hand, for a
multichannel scattering, a minimum of TC of a Fano reso-
nant channel does not imply a decrease of uncertainty about
the subsystems, since the TCs of the other non-Fano resonant
channels attain values comparable to each other.

Finally, the results of our paper suggest that the manipu-
lation of Fano resonances and of the number of scattering
channels may allow to significantly influence the degree of
entanglement between the transmitted electrons and the QD.
A promising development of the present work could be the
study of the entanglement in the case of scattering of a single
electron by a few charges confined in the QD, in connection
with experimental results obtained for the coherent compo-
nents of the transmitted current in the case of the multioccu-
pancy of the dot.18,42 In the latter case, with three or more
particles in the system, the spin degrees of freedom cannot
be factorized and their inclusion in our approach, although
quite feasible, results to be very challenging from the com-
putational point of view.
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