840 research outputs found

    Thermoelectric behavior of Ruddlesden-Popper series iridates

    Full text link
    The goal of this work is studying the evolution of thermoelectric transport across the members of the Ruddlesden-Popper series iridates Srn+1IrnO3n+1, where a metal-insulator transition driven by bandwidth change occurs, from the strongly insulating Sr2IrO4 to the metallic non Fermi liquid behavior of SrIrO3. Sr2IrO4 (n=1), Sr3Ir2O7 (n=2) and SrIrO3 (n=inf.) polycrystals are synthesized at high pressure and characterized by structural, magnetic, electric and thermoelectric transport analyses. We find a complex thermoelectric phenomenology in the three compounds. Thermal diffusion of charge carriers accounts for the Seebeck behavior of Sr2IrO4, whereas additional drag mechanisms come into play in determining the Seebeck temperature dependence of Sr3Ir2O7 and SrIrO3. These findings reveal close relationship between magnetic, electronic and thermoelectric properties, strong coupling of charge carriers with phonons and spin fluctuations as well as relevance of multiband description in these compounds.Comment: main paper + supplementary informatio

    EUS Staging of Luminal Cancers in the Upper GI Tract

    Get PDF

    Properties of compositionally graded Ba(1-x)SrxTiO(3) thick films

    Get PDF
    Compositionally graded thick films (0.4 mm) have been fabricated using the airflow deposition method. Films were made of five layers with different composition Ba1-xSrxTiO(3) (BST, x=0, 0.1, 0.2, 0.3 and 0.4). The layers presented different thicknesses, ranging from 80 to 30 microns, but similar Vickers microhardness. The average particle size of deposited layers was below 500 nm and the density of asdeposited films was about 80% of theoretical. After sintering at 1350 ?C samples presented increaseddensity (>90%) and maintained a compositional gradient. When compared to single-composition BST ceramics, permittivity of graded films was much less dependent on temperature over a wide range, from -50 to 250 ?C. In addition, the films displayed polarisation offset when driven by an alternating field and heated above 50?C

    Session 8: \u3cem\u3eStatistical Discrimination Methods for Forensic Source Interpretation of Aluminum Powders in Explosives\u3c/em\u3e

    Get PDF
    Aluminum (Al) powder is often used as a fuel in explosive devices; therefore, individuals attempting to make illegal improvised explosive devices often obtain it from legitimate commercial products or make it themselves using readily available Al starting materials. The characterization and differentiation between sources of Al powder for additional investigative and intelligence value has become increasingly important. Previous research modeled the distributions of micromorphometric features of Al powder particles within a subsample to support Al source discrimination. Since then, additional powder samples from a variety of different source types have been obtained and analyzed, providing a more comprehensive dataset for applying the two statistical methods for interpretation and discrimination of source. Here, we compare two different statistical techniques: one using linear discriminant analysis (LDA), and the other using a modification to the method used in ASTM E2927-16e1 and E2330-19. The LDA method results in an Al source classification for each questioned sample. Alternatively, our modification to the ASTM method uses an interval-based match criterion to associate or exclude each of the known sources as the actual source of a trace. Although the outcomes of these two statistical methods are fundamentally different, their performance with respect to the closed-set identification of source problem is compared. Additionally, the modified ASTM method will be adapted to provide a vector of scores in lieu of the binary decision as the first step towards a score-based likelihood ratio for interpreting Al powder micromorphometric measurement data

    G-quadruplex structure and stability illuminated by 2-aminopurine phasor plots

    Get PDF
    The use of time-resolved fluorescence measurements in studies of telomeric G-quadruplex folding and stability has been hampered by the complexity of fluorescence lifetime distributions in solution. The application of phasor diagrams to the analysis of time-resolved fluorescence measurements, collected from either frequency-domain or time-domain instrumentation, allows for rapid characterization of complex lifetime distributions. Phasor diagrams are model-free graphical representations of transformed time-resolved fluorescence results. Simplification of complex fluorescent decays by phasor diagrams is demonstrated here using a 2-aminopurine substituted telomeric G-quadruplex sequence. The application of phasor diagrams to complex systems is discussed with comparisons to traditional non-linear regression model fitting. Phasor diagrams allow for the folding and stability of the telomeric G-quadruplex to be monitored in the presence of either sodium or potassium. Fluorescence lifetime measurements revealed multiple transitions upon folding of the telomeric G-quadruplex through the addition of potassium. Enzymatic digestion of the telomeric G-quadruplex structure, fluorescence quenching and Förster resonance energy transfer were also monitored through phasor diagrams. This work demonstrates the sensitivity of time-resolved methods for monitoring changes to the telomeric G-quadruplex and outlines the phasor diagram approach for analysis of complex time-resolved results that can be extended to other G-quadruplex and nucleic acid systems

    Ferroelectric order driven Eu3+ photoluminescence in BaZrxTi1−xO3 perovskite

    Get PDF
    The ability to tune and enhance the properties of luminescent materials is essential for enlarging their application potential. Recently, the modulation of the photoluminescence emission of lanthanide-doped ferroelectric perovskites by applying an electric field has been reported. Herein, we show that the ferroelectric order and, more generally the polar order, has a direct effect on the photoluminescence of Eu3+ in the model BaZrxTi1-xO3 perovskite even in the absence of an external field. The dipole arrangement evolves with increasing xfrom long-range ferroelectric order to short-range order typical of relaxors until the non-polar paraelectric BaZrO3 is achieved. The cooperative polar interactions existing in the lattice (x < 1) promote the off-center displacement of the Eu3+ ion determining a change of the lanthanide site symmetry and, consequently, an abrupt variation of the photoluminescence emission with temperature. Each type of polar order is characterized by a distinct photoluminescence behaviour

    The local and average structure of Ba(Ti, Ce)O3 perovskite solid solution: effect of cerium concentration and particle size

    Get PDF
    The amazing properties of ferroelectric perovskite BaTiO3 (BT) and its solid solutions make them indispensable for many technological applications (e.g. multilayer capacitors). Unfortunately, the so-called `size effect' limits their use. Indeed, under a certain critical particle size, these materials show a suppression of the spontaneous polarization and thus of the ferroelectric properties. In pure nanometric BaTiO3, this is related to a certain local structural disorder. However, only a few studies have explored BT solid solutions, where the doping effect, coupled to the reduced particle size, can play an important role. Therefore, in this work, the structure of BaCexTi1\u2013xO3 (x = 0.02\u20130.20) was explored by traditional Rietveld method and Pair Distribution Function. Samples present a particle size from 80\u2013160 nm to 400\u20131000 nm depending on increasing x. The carbox approach was applied, investigating the evolution of the local structure, its modifications and the structural coherent correlation length, as a function of cerium amount. Results demonstrate a cooperative effect of composition and reduced size in the ferroelectricity loss. The two, in fact, contribute to intensify the local structural disorder, decreasing the structural coherent correlation length. The local structural disorder is thus confirmed to be a relevant factor in the ferroelectric properties degradation

    Sudden death after valve-in-valve procedure due to delayed coronary obstruction. A case report

    Get PDF
    Background: Valve-in-valve transcatheter aortic valve implantation for degenerated aortic bioprostheses is an effective option for patients at high risk for redo surgery, even if it may be burdened by complications more common in specific settings, such as, coronary artery obstruction. Case presentation: We present the case of a Caucasic 84-year-old woman with degeneration of a previously implanted aortic Mitroflow bioprosthesis. She underwent a valve-in-valve transcatheter aortic valve implantation with a CoreValve® bioprosthesis. End-procedure coronary angiography demonstrated maintained perfusion of both coronary arteries. However, few hours later, she experienced sudden cardiac death. An autopsy showed that Mitroflow prosthesis leaflets were higher than the left main coronary ostium, and no other possible cause for the sudden death. Fatality was thus ascribed to left main coronary ostium obstruction due to apposition of the Mitroflow leaflet pushed upward by the late expansion of CoreValve®. Conclusions: Coronary artery obstruction is a frequently fatal complication which usually presents just after valve implantation, but, as reported in our case, it may also have a delayed presentation. Accurate patient's selection and intraoperative preventive measures can reduce this eventuality
    corecore