28 research outputs found

    Performance and operational effectiveness of evacuated flat plate solar collectors compared with conventional thermal, PVT and PV panels

    Get PDF
    The concept of an evacuated flat plate (EFP) collector was proposed over 40 years ago but, despite its professed advantages, very few manufacturers have developed commercial versions. This situation suggests both technical difficulties in manufacturing a competitively-priced sealed for life panel and a lack of awareness of the bene fits of such panels. This paper demonstrates an evacuated flat plate simulation that closely models experimental efficiency measurements. Having established the validity of the model, it compares published data for a commercial EFP collector with predictions for an optimal design to investigate whether any further efficiency improvement might be possible. The optimised design is then evaluated against alternative solar energy devices by modelling a number of possible applications. These comparisons should inform choices about solar options for delivering heat: EFP collectors are well-suited to some of these applications. Evacuated flat plate collectors are a possible alternative to concentrating collectors for Organic Rankine Cycle power generation. The annual output for all the modelled collectors was found to be a quadratic function of delivery temperature: this enabled a novel optimisation of ORC source temperature. Predictions for concentrating and non-concentrating ORC plant are compared with a PV/thermal alternative. The ORC output is significantly less than a PV panel would achieve; applications needing both heat and power are better served by PVT panels. This is an original and novel result

    Marine diatoms grown in chemostats under silicate or ammonium limitation. III. Cellular chemical composition and morphology of Chaetoceros debilis, Skeletonema costatum , and Thalassiosira gravida

    Full text link
    Three marine diatoms, Skeletonema costatum, Chaetoceros debilis , and Thalassiosira gravida were grown under no limitation and ammonium or silicate limitation or starvation. Changes in cell morphology were documented with photomicrographs of ammonium and silicate-limited and non-limited cells, and correlated with observed changes in chemical composition. Cultures grown under silicate starvation or limitation showed an increase in particulate carbon, nitrogen and phosporus and chlorophyll a per unit cell volume compared to non-limited cells; particulate silica per cell volume decreased. Si-starved cells were different from Si-limited cells in that the former contained more particulate carbon and silica per cell volume. The most sensitive indicator of silicate limitation or starvation was the ratio C:Si, being 3 to 5 times higher than the values for non-limited cells. The ratios Si:chlorophyll a and S:P were lower and N:Si was higher than non-limited cells by a factor of 2 to 3. The other ratios, C:N, C:P, C:chlorophyll a , N:chlorophyll a , P:chlorophyll a and N:P were considered not to be sensitive indicators of silicate limitation or starvation. Chlorophyll a , and particulate nitrogen per unit cell volume decreased under ammonium limitation and starvation. NH 4 -starved cells contained more chlorophyll a , carbon, nitrogen, silica, and phosphorus per cell volume than NH 4 -limited cells. N:Si was the most sensitive ratio to ammonium limitation or starvation, being 2 to 3 times lower than non-limited cells. Si:chlorophyll a , P:chlorophyll a and N:P were less sensitive, while the ratios C:N, C:chlorophyll a , N:chlorophyll a , C:Si, C:P and Si:P were the least sensitive. Limited cells had less of the limiting nutrient per unit cell volume than starved cells and more of the non-limiting nutrients (i.e., silica and phosphorus for NH 4 -limited cells). This suggests that nutrient-limited cells rather than nutrient-starved cells should be used along with non-limited cells to measure the full range of potential change in cellular chemical composition for one species under nutrient limitation.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46631/1/227_2004_Article_BF00392568.pd
    corecore