26 research outputs found

    Considering aspects of the 3Rs principles within experimental animal biology

    Get PDF
    The 3Rs – Replacement, Reduction and Refinement – are embedded into the legislation and guidelines governing the ethics of animal use in experiments. Here, we consider the advantages of adopting key aspects of the 3Rs into experimental biology, represented mainly by the fields of animal behaviour, neurobiology, physiology, toxicology and biomechanics. Replacing protected animals with less sentient forms or species, cells, tissues or computer modelling approaches has been broadly successful. However, many studies investigate specific models that exhibit a particular adaptation, or a species that is a target for conservation, such that their replacement is inappropriate. Regardless of the species used, refining procedures to ensure the health and well-being of animals prior to and during experiments is crucial for the integrity of the results and legitimacy of the science. Although the concepts of health and welfare are developed for model organisms, relatively little is known regarding non-traditional species that may be more ecologically relevant. Studies should reduce the number of experimental animals by employing the minimum suitable sample size. This is often calculated using power analyses, which is associated with making statistical inferences based on the P-value, yet P-values often leave scientists on shaky ground. We endorse focusing on effect sizes accompanied by confidence intervals as a more appropriate means of interpreting data; in turn, sample size could be calculated based on effect size precision. Ultimately, the appropriate employment of the 3Rs principles in experimental biology empowers scientists in justifying their research, and results in highe-rquality science

    A primary fish gill cell culture model to assess pharmaceutical uptake and efflux:evidence for passive and facilitated transport

    Get PDF
    AbstractThe gill is the principle site of xenobiotic transfer to and from the aqueous environment. To replace, refine or reduce (3Rs) the large numbers of fish used in in vivo uptake studies an effective in vitro screen is required that mimics the function of the teleost gill. This study uses a rainbow trout (Oncorhynchus mykiss) primary gill cell culture system grown on permeable inserts, which tolerates apical freshwater thus mimicking the intact organ, to assess the uptake and efflux of pharmaceuticals across the gill. Bidirectional transport studies in media of seven pharmaceuticals (propranolol, metoprolol, atenolol, formoterol, terbutaline, ranitidine and imipramine) showed they were transported transcellularly across the epithelium. However, studies conducted in water showed enhanced uptake of propranolol, ranitidine and imipramine. Concentration-equilibrated conditions without a concentration gradient suggested that a proportion of the uptake of propranolol and imipramine is via a carrier-mediated process. Further study using propranolol showed that its transport is pH-dependent and at very low environmentally relevant concentrations (ngL−1), transport deviated from linearity. At higher concentrations, passive uptake dominated. Known inhibitors of drug transport proteins; cimetidine, MK571, cyclosporine A and quinidine inhibited propranolol uptake, whilst amantadine and verapamil were without effect. Together this suggests the involvement of specific members of SLC and ABC drug transporter families in pharmaceutical transport

    Gill cell culture systems as models for aquatic environmental monitoring

    No full text
    A vast number of chemicals require environmental safety assessments for market authorisation. To ensure acceptable water quality, effluents and natural waters are monitored for their potential harmful effects. Tests for market authorisation and environmental monitoring usually involve the use of large numbers of organisms and, for ethical, cost and logistic reasons, there is a drive to develop alternative methods that can predict toxicity to fish without the need to expose any animals. There is therefore a great interest in the potential to use cultured fish cells in chemical toxicity testing. This review summarises the advances made in the area and focuses in particular on a system of cultured fish gill cells grown into an epithelium that permits direct treatment with water samples.</jats:p

    Influence of urban river restoration on nitrogen dynamics at the sediment-water interface

    Get PDF
    River restoration projects focused on altering flow regimes through use of in-channel structures can facilitate ecosystem services, such as promoting nitrogen (N) storage to reduce eutrophication. In this study we use small flux chambers to examine ammonium (NH4+) and nitrate (NO3-) cycling across the sediment-water interface. Paired restored and unrestored study sites in 5 urban tributaries of the River Thames in Greater London were used to examine N dynamics following physical disturbances (0-3 min exposures) and subsequent biogeochemical activity (3-10 min exposures). Average ambient NH4+ concentrations were significantly different amongst all sites and ranged from 28.0 to 731.7 μg L-1, with the highest concentrations measured at restored sites. Average NO3- concentrations ranged from 9.6 to 26.4 mg L-1, but did not significantly differ between restored and unrestored sites. Average NH4+ fluxes at restored sites ranged from -8.9 to 5.0 μg N m-2 sec-1, however restoration did not significantly influence NH4+ uptake or regeneration (i.e., a measure of release to surface water) between 0-3 minutes and 3-10 minutes. Further, average NO3- fluxes amongst sites responded significantly between 0-3 minutes ranging from -33.6 to 97.7 μg N m-2 sec-1. Neither NH4+ nor NO3- fluxes correlated to sediment chlorophyll-a, total organic matter, or grain size. We attributed variations in overall N fluxes to N-specific sediment storage capacity, biogeochemical transformations, potential legacy effects associated with urban pollution, and variations in river-specific restoration actions

    The use of molecular descriptors to model pharmaceutical uptake by a fish primary gill cell culture epithelium

    Get PDF
    Modeling approaches such as quantitative structure–activity relationships (QSARs) use molecular descriptors to predict the bioavailable properties of a compound in biota. However, these models have mainly been derived based on empirical data for lipophilic neutral compounds and may not predict the uptake of ionizable compounds. The majority of pharmaceuticals are ionizable, and freshwaters can have a range of pH values that affect speciation. In this study, we assessed the uptake of 10 pharmaceuticals (acetazolamide, beclomethasone, carbamazepine, diclofenac, gemfibrozil, ibuprofen, ketoprofen, norethindrone, propranolol, and warfarin) with differing modes of action and physicochemical properties (p<i>K</i><sub>a</sub>, log <i>S</i>, log <i>D</i>, log <i>K</i><sub>ow</sub>, molecular weight (MW), and polar surface area (PSA)) by an in vitro primary fish gill cell culture system (FIGCS) for 24 h in artificial freshwater. Principal component analysis (PCA) and partial least-squares (PLS) regression was used to determine the molecular descriptors that influence the uptake rates. Ionizable drugs were taken up by FIGCS; a strong positive correlation was observed between log <i>S</i> and the uptake rate, and a negative correlation was observed between p<i>K</i><sub>a</sub>, log <i>D</i>, and MW and the uptake rate. This approach shows that models can be derived on the basis of the physicochemical properties of pharmaceuticals and the use of an in vitro gill system to predict the uptake of other compounds. There is a need for a robust and validated model for gill uptake that could be used in a tiered risk assessment to prioritize compounds for experimental testing
    corecore