7 research outputs found

    D.V.: Project animat brain: Designing the animat control system on the basis of the functional systems theory

    No full text
    Abstract. The paper describes the design of an animat control system (the Animat Brain) that is based of the Petr K. Anokhin's theory of functional systems. We propose the animat control system that consists of a set of functional systems (FSs) and enables predictive and purposeful behavior. Each FS consists of two neural networks: the Actor and the Model. The Actors are intended to form chains of actions and the Models are intended to predict futures events. There are primary and secondary repertoires of behaviors: the primary repertoire is formed by evolution; the secondary repertoire is formed by means of learning. The paper describes both principles of the Animat Brain operation and the particular model of predictive behavior in cellular landmark environment.

    Nuclear Incoherence: Deterrence Theory and Non-Strategic Nuclear Weapons in Russia

    No full text

    Light isovector resonances in pi(-) p -> pi(-) pi(-) pi(+)p at 190 GeV/c

    Get PDF
    We have performed the most comprehensive resonance-model fit of pi(-)pi(-)pi(+) states using the results of our previously published partial-wave analysis (PWA) of a large data set of diffractive-dissociation events from the reaction pi(-) + p -> pi(-)pi(-)pi(+) +p(recoil) with a 190 GeV/c pion beam. The PWA results, which were obtained in 100 bins of three-pion mass, 0.5 < m(3 pi) < 2.5 GeV/c(2), and simultaneously in 11 bins of the reduced four-momentum transfer squared, 0.1 < t'< 1.0 (GeV/c)(2), are subjected to a resonance-model fit using Breit-Wigner amplitudes to simultaneously describe a subset of 14 selected waves using 11 isovector light-meson states with J(PC) = 0(-+), 1(++), 2(++), 2(-+), 4(++), and spin-exotic 1(-+) quantum numbers. The model contains the well-known resonances pi(1800), a(1)(1260), a(2)(1320), pi(2)(1670), pi(2)(1880), and a(4) (2040). In addition, it includes the disputed pi(1)(1600), the excited states a(1)(1640), a2(1700), and pi(2) (2005), as well as the resonancelike a(1)(1420). We measure the resonance parameters mass and width of these objects by combining the information from the PWA results obtained in the 11 t' bins. We extract the relative branching fractions of the rho(770)pi and f(2)(1270)pi decays of a(2)(1320) and a(4)(2040), where the former one is measured for the first time. In a novel approach, we extract the t' dependence of the intensity of the resonances and of their phases. The t' dependence of the intensities of most resonances differs distinctly from the t' dependence of the nonresonant components. For the first time, we determine the t' dependence of the phases of the production amplitudes and confirm that the production mechanism of the Pomeron exchange is common to all resonances. We have performed extensive systematic studies on the model dependence and correlations of the measured physical parameters
    corecore