87 research outputs found

    Bubble Column Apparatus for Separating Wax from Catalyst Slurry

    Get PDF
    Novel methods and devices for production of liquid hydrocarbon products from gaseous reactants are disclosed. In one aspect, a method for separating a liquid hydrocarbon, typically a wax, from a catalyst containing slurry is provided, comprising passing the slurry through at least one downcomer extending from an overhead separation chamber and discharging into the bottom of a slurry bubble column reactor. The downcomer includes a cross-flow filtration element for separating a substantially particle-free liquid hydrocarbon for downstream processing. In another aspect, a method for promoting plug-flow movement in a recirculating slurry bubble column reactor is provided, comprising discharging the recirculating slurry into the reactor through at least one downcomer which terminates near the bottom of the reactor. Devices for accomplishing the above methods are also provided

    Influence of Reduction Promoters on Stability of Cobalt/γ-Alumina Fischer-Tropsch Synthesis Catalysts

    Get PDF
    This focused review article underscores how metal reduction promoters can impact deactivation phenomena associated with cobalt Fischer-Tropsch synthesis catalysts. Promoters can exacerbate sintering if the additional cobalt metal clusters, formed as a result of the promoting effect, are in close proximity at the nanoscale to other cobalt particles on the surface. Recent efforts have shown that when promoters are used to facilitate the reduction of small crystallites with the aim of increasing surface Co0 site densities (e.g., in research catalysts), ultra-small crystallites (e.g., \u3c 2–4.4 nm) formed are more susceptible to oxidation at high conversion relative to larger ones. The choice of promoter is important, as certain metals (e.g., Au) that promote cobalt oxide reduction can separate from cobalt during oxidation-reduction (regeneration) cycles. Finally, some elements have been identified to promote reduction but either poison the surface of Co0 (e.g., Cu), or produce excessive light gas selectivity (e.g., Cu and Pd, or Au at high loading). Computational studies indicate that certain promoters may inhibit polymeric C formation by hindering C-C coupling

    Methanol Steam Reforming: Na Doping of Pt/YSZ Provides Fine Tuning of Selectivity

    Get PDF
    In this work, we found that sodium doping can be used to improve CO2 selectivity for supported Pt catalyst during methanol steam reforming. These materials are usually very active in the low temperature range; however, they are characterized by high selectivity of CO, which is a poison in downstream polymer electrolyte membrane fuel cells (PEM-FC) application. With Na doping, we found that CO2 selectivity was higher than 90% when 2.5 wt.% of sodium was added to Pt/YSZ. We have speculated that the different product distribution is due to a different reaction pathway being opened for CH3OH decomposition. Methanol decarbonylation was favored when Na was absent or low, while a formate decarboxylation pathway was favored when Na content reached 2.5 wt.%. The proposal is rooted in the observed weakening of the C-H bond of formate, as demonstrated in in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and kinetic isotope effect (KIE) experiments for the water-gas shift reaction conducted at low temperature. When adsorbed methoxy, produced when methanol is dissociatively adsorbed, was converted in the presence of H2O in DRIFTS spectroscopy, formate species were prevalent for a 2% Pt–2.5% Na/YSZ catalyst, while only a minor contribution was observed for 2% Pt/YSZ. Moreover, the formate produced on Na-doped Pt/YSZ exhibited ν(CH) stretching bands at low wavenumber, consistent with C–H bond weakening, thus favoring dehydrogenation (and decarboxylation). It is proposed that when Na is present, formate is likely an intermediate, and because its dehydrogenation is favored, selectivity can be fine-tuned between decarbonylation and decarboxylation based on Na dopant level

    Identification of tetragonal and cubic structures of zirconia using synchrotron x-radiation source

    Get PDF
    X-ray diffraction from a synchrotron source was employed in an attempt to identify the crystal structures in zirconia ceramics produced by the sol-gel method. The particles of chemically precipitated zirconia, after calcination below 600 °C, are very fine, and have a diffracting particle size in the range of 7-15 nm. As the tetragonal and cubic structures of zirconia have similar lattice parameters, it is difficult to distinguish between the two. The tetragonal structure can be identified only by the characteristic splittings of the Bragg profiles from the c index planes. However, these split Bragg peaks from the tetragonal phase in zirconia overlap with one another due to particle size broadening. In order to distinguish between the tetragonal and cubic structures of zirconia, three samples were studied using synchrotron radiation source. The results indicated that a sample containing 13 mol % yttria-stabilized zirconia possessed the cubic structure with ao — 0.51420 ± 0.00012 nm. A sample containing 6.5 mol % yttria stabilized zirconia was found to consist of a cubic phase with ao — 0.51430 ± 0.00008 nm. Finally, a sample which was precipitated from a pH 13.5 solution was observed to have the tetragonal structure with ao = 0.51441 ± 0.00085 nm and co = 0.51902 ± 0.00086

    Hydrocracking of Octacosane and Cobalt Fischer–Tropsch Wax over Nonsulfided NiMo and Pt-Based Catalysts

    Get PDF
    The effect of activation environment (N2, H2 and H2S/H2) on the hydrocracking performance of a NiMo/Al catalyst was studied at 380 °C and 3.5 MPa using octacosane (C28). The catalyst physical structure and acidity were characterized by BET, XRD, SEM-EDX and FTIR techniques. The N2 activation generated more active nonsulfided NiMo/Al catalyst relative to the H2 or H2S activation (XC28, 70–80% versus 6–10%). For a comparison, a NiMo/Si-Al catalyst was also tested after normal H2 activation and showed higher activity at the same process conditions (XC28, 81–99%). The high activity of the NiMo/Al (N2 activation) and NiMo/Si-Al catalysts was mainly ascribed to a higher number of Brønsted acid sites (BAS) on the catalysts. The hydrocracking of cobalt wax using Pt/Si-Al and Pt/Al catalysts confirmed the superior activity of the Si-Al support. A double-peak product distribution occurred at C4–C6 and C10–C16 on all catalysts, which illustrates secondary hydrocracking and faster hydrocracking at the middle of the chain. The nonsulfided NiMo/Al and Pt/Al catalysts, and NiMo/Si-Al catalyst produced predominantly diesel (sel. 50–70%) and gasoline range (sel. \u3e 50%) hydrocarbons, respectively, accompanied by some CH4 and light hydrocarbons C2–C4. On the other hand, the hydrocarbon distribution of the Pt/Si-Al varied with conditions (i.e., diesel sel. 87–90% below 290 °C or gasoline sel. 60–70% above 290 °C accompanied by little CH4) The dependence of the isomer/paraffin ratio on chain length was studied as well. The peak iso/paraffin value was observed at C10–C13 for the SiAl catalyst

    Fischer–Tropsch Synthesis: Effect of Ammonia on Product Selectivities for a Pt Promoted Co/Alumina Catalyst

    Get PDF
    The effects of co-fed ammonia in synthesis gas on the activity and product selectivities of a typical cobalt catalyst (0.5% Pt–25% Co/Al2O3) were investigated during the Fischer–Tropsch synthesis using a continuously stirred tank reactor (CSTR). The product selectivities were compared at a similar CO conversion level for various concentrations (10–1000 ppmv) of ammonia, as well as clean (un-poisoned) conditions. The addition of 10–1000 ppmv ammonia (concentration of ammonia with respect to the syngas feed) significantly decreased activity; the percentage of deactivation was similar (∼40%) for the various concentrations of ammonia used. At similar CO conversions, the addition of ammonia caused an increase in olefin selectivity and the corresponding paraffin and alcohol selectivities were decreased compared to the ammonia free synthesis conditions. Olefin selectivity increased with increasing concentration of ammonia, and the paraffin and alcohol selectivities were decreased with increasing ammonia concentration. At similar CO conversions, ammonia addition exhibited a positive effect on hydrocarbon selectivity (i.e., lower light gas products and higher C5+) and also light gas product selectivities (C1–C4) were decreased and C5+ selectivity increased with increasing concentration of ammonia compared to ammonia free conditions

    Fischer-Tropsch synthesis over Pt/Co/Al2O3 catalyst : improvement in catalyst stability by activation with diluted CO

    Get PDF
    Abstract: Fischer-Tropsch cobalt-based catalyst deactivation is one of the major challenges facing gas-to-liquids processes. Changes in catalyst formulation and pre-treatment methods are among the promising routes to address this challenge. In this study, diluted CO was used to pre-treat a 0.5%Pt/25%Co/Al2O3 catalyst, in comparison to H2, and the resulting effects on catalyst stability, activity and product selectivity were evaluated. The investigation was performed using BET, TEM, TPR, XPS and XRD techniques, combined with catalyst evaluation in a 1L continuously stirred tank reactor. The results reveal that microporous carbon shells encapsulate Co particles during activation by CO at higher temperatures, resulting in lower activity and higher methane selectivity compared to the H2-reduced catalyst, at early reaction times. However, the CO-activated catalyst displayed superior stability, resulting in better performance at extended time-on-stream compared 2 to a deactivating H2-activated catalyst, which showed an increase in CH4 selectivity and a decline in C5+ hydrocarbon formation rate
    • …
    corecore