6,366 research outputs found

    Diagnostic yield of cytologic analysis of pericardial effusion in dogs.

    Get PDF
    BackgroundPericardial effusion cytology is believed by many to be of limited value, yet few studies have evaluated its diagnostic utility.ObjectivesTo determine the diagnostic utility of cytologic analysis of pericardial effusion in dogs and to determine if consideration of additional data could improve the diagnostic yield.AnimalsTwo hundred and fifty-nine dogs with cytologic analysis of pericardial effusion performed between April 1990 and June 2012.MethodsElectronic medical records from a university teaching hospital were retrospectively reviewed; signalment, complete blood count, serum biochemistry, cytologic analysis of pericardial effusion, and echocardiographic data were recorded. Cytology was classified as diagnostic (infectious or neoplastic) or nondiagnostic (hemorrhagic or other) and groups were compared with multiple Student's t-tests.ResultsCytology was grouped as nondiagnostic (92.3%) or diagnostic (7.7%) and characterized as hemorrhagic (90%), neoplastic (4.6%), infectious (3.1%), or other (2.3%). Overall cytologic analysis of pericardial effusion diagnostic utility was 7.7% and increased to 20.3% if the effusion hematocrit (HCT) <10%; echocardiographic evidence of a mass did not result in a significant increase in the diagnostic utility.Conclusions and clinical importanceThe diagnostic utility of cytologic analysis of canine pericardial effusion is variable depending on the underlying etiology. In this group of dogs, the diagnostic yield of cytologic analysis was greater for pericardial effusion samples in which the HCT was less than 10%

    Sixty Billion Gallons by 2030: Economic and Agricultural Impacts of Ethanol and Biodiesel Expansion

    Get PDF
    Agriculture is well positioned as a feedstock source because the fuels can be utilized with current engine technologies and are compatible with the current distribution infrastructure. Commercialization of cellulosic to ethanol technology will enable fuels to be derived from a diverse portfolio of feedstocks from numerous regions of the country. The levels of ethanol production analyzed are 10, 30, and 60 billion gallons of ethanol annually by 2010, 2020 and 2030, respectively. Impacts of producing 1 billion gallons of biodiesel production by 2012 and 1.6 billion gallons by 2030 are also projected. Overall, for the period 2007 to 2030, the estimated accumulated gains in net farm income are over 210billion;andtheaccumulatedpotentialsavingsingovernmentpaymentsareestimatedtobe210 billion; and the accumulated potential savings in government payments are estimated to be 150 billion. Due to the geographic decentralization of the production of feedstock, economic gains are projected to accrue to the majority of regions of the country. Significant expansion beyond 60 billion gallons per year would likely require expansion of the region suitable for the production of bioenergy crops, ability to convert other pastureland (beyond cropland in pasture) into energy crops; allowing CRP acreage to be used in feedstock production, increasing short-rotation wood crops in the Northeast and Northwest regions, increased yields above those assumed in the analysis, and/or increasing the efficiency of cellulosic conversion. Further research should examine the agricultural, environmental, and economic impacts of one or more these factors changing.Resource /Energy Economics and Policy,

    A Farm-Level Evaluation of Conditions Under Which Farmers Will Supply Biomass Feedstocks for Energy Production

    Get PDF
    This study evaluated the risk management potential of including biomass crops as a diversification strategy for a grain farm in northwest Tennessee. Results indicate that adding biomass crops to the farm enterprise mix could improve mean net revenues and reduced net revenue variability.Resource /Energy Economics and Policy,

    Effects of No-Tillage Production Practices on Crop Yields as Influenced by Crop and Growing Environment Factors

    Get PDF
    This paper evaluated differences between yields of no-tillage compared to conventional or reduced tillage and their associated downside risk. Six crops were evaluated along with how those yields and risks differed by various environmental factors such geographic location, precipitation, soil type and how long the practice had been used.no-tillage, conservation, conventional tillage, downside-risk, yield, Agribusiness, Environmental Economics and Policy, Farm Management, Land Economics/Use, Production Economics, Risk and Uncertainty,

    ECONOMIC IMPACTS RESULTING FROM CO-FIRING BIOMASS FEEDSTOCKS IN SOUTHEASTERN UNITED STATES COAL-FIRED PLANTS

    Get PDF
    Economic impacts of using biomass in Southeast United States coal-fired plants are estimated using a county-level biomass database; ORCED, a dynamic electricity distribution model that estimates feedstock value; ORIBAS, a GIS model that estimates feedstock transportation costs; and IMPLAN, an input-output model that determines the impacts of co-firing on economic activity.Resource /Energy Economics and Policy,

    The role of syn-eruptive vesiculation on explosive basaltic activity at Mt. Etna, Italy

    Get PDF
    We investigated the dynamics of explosive activity at Mt. Etna between 31 August and 15 December 2006 by combining vesicle studies in the erupted products with measurements of the gas composition at the active, summit crater. The analysed scoria clasts present large, connected vesicles with complex shapes and smaller, isolated, spherical vesicles, the content of which increases in scoriae from the most explosive events. Gas geochemistry reports CO2/SO2 and SO2/HCl ratios supporting a deep-derived gas phase for fire-fountain activity. By integrating results from scoria vesiculation and gas analysis we find that the highest energy episodes of Mt. Etna activity in 2006 were driven by a previously accumulated CO2-rich gas phase but we highlight the lesser role of syn-eruptive vesicle nucleation driven by water exsolution during ascent. We conclude that syn-eruptive vesiculation is a common process in Etnean magmas that may promote a deeper conduit magma fragmentation and increase ash formation

    New insights into volcanic processes at Stromboli from Cerberus, a remote-controlled open-path FTIR scanner system

    Get PDF
    The ordinary, low intensity, activity of Stromboli volcano is sporadically interrupted by more energetic events termed, depending on their intensity, “major explosions” and “paroxysms”. These short-lived energetic episodes represent a potential risk to visitors to the highly accessible summit of Stromboli. Observations made at Stromboli over the last decade have shown that the composition of gas emitted from the summit craters may change prior to such explosions, allowing the possibility that such changes may be used to forecast these potentially dangerous events. In 2008 we installed a novel, remote-controlled, open-path FTIR scanning system called Cerberus at the summit of Stromboli, with the objective of measuring gas compositions from individual vents within the summit crater terrace of the volcano with high temporal resolution and for extended periods. In this work we report the first results from the Cerberus system, collected in August-September 2009, November 2009 and May-June 2010. We find significant, fairly consistent, intra-crater variability for CO2/SO2 and H2O/CO2 ratios, and relatively homogeneous SO2/HCl ratios. In general, the southwest crater is richest in CO2, and the northeast crater poorest, while the central crater is richest in H2O. It thus appears that during the measurement period the southwest crater had a somewhat more direct connection to a primary, deep degassing system; whilst the central and northeast craters reflect a slightly more secondary degassing nature, with a supplementary, shallow H2O source for the central crater, probably related to puffing activity. Such water-rich emissions from the central crater can account for the lower crystal content of its eruption products, and emphasise the role of continual magma supply to the shallowest levels of Stromboli's plumbing system. Our observations of heterogeneous crater gas emissions and high H2O/CO2 ratios do not agree with models of CO2-flushing, and we show that simple depressurisation during magma ascent to the surface is a more likely model for H2O loss at Stromboli. We highlight that alternative explanations other than CO2 flushing are required to explain distributions of H2O and CO2 amounts dissolved in melt inclusions. We detected fairly systematic increases in CO2/SO2 ratio some weeks prior to major explosions, and some evidence of a decrease in this ratio in the days immediately preceding the explosions, with periods of low, stable CO2/SO2 ratios between explosions otherwise. Our measurements, therefore, confirm the medium term (~ weeks) precursory increases previously observed with MultiGas instruments, and, in addition, reveal new, short-term precursory decreases in CO2/SO2 ratios. immediately prior to the major explosions. Such patterns, if shown to be systematic, may be of great utility for hazard management at Stromboli's summit. Our results suggest that intra-crater CO2/SO2 variability may produce short-term peaks and troughs in CO2/SO2 time series measured with in-situ MultiGas instruments, due simply to variations in wind direction

    The role of syn-eruptive vesiculation on explosive basaltic activity at Mt. Etna, Italy

    Get PDF
    We investigated the dynamics of explosive activity at Mt. Etna between 31 August and 14 December 2006 by combining vesicle studies in the erupted products with measurements of the gas composition at the active, summit crater. The analysed scoria clasts present large, connected vesicles with complex shapes and smaller, isolated, spherical vesicles, the content of which increases in scoriae from the most explosive events. Gas geochemistry reports CO2/SO2 and SO2/HCl ratios supporting a deep-derived gas phase for fire-fountain activity. By integrating results from scoria vesiculation and gas analysis we find that the highest energy episodes of Mt. Etna activity in 2006 were driven by a previously accumulated CO2-rich gas phase but we highlight the lesser role of syn-eruptive vesicle nucleation driven by water exsolution during ascent. We conclude that syn-eruptive vesiculation is a common process in Etnean magmas that may promote a deeper conduit magma fragmentation and increase ash formatio
    corecore