88 research outputs found
Statistical modelling of transcript profiles of differentially regulated genes
Background: The vast quantities of gene expression profiling data produced in microarray studies, and
the more precise quantitative PCR, are often not statistically analysed to their full potential. Previous
studies have summarised gene expression profiles using simple descriptive statistics, basic analysis of
variance (ANOVA) and the clustering of genes based on simple models fitted to their expression profiles
over time. We report the novel application of statistical non-linear regression modelling techniques to
describe the shapes of expression profiles for the fungus Agaricus bisporus, quantified by PCR, and for E.
coli and Rattus norvegicus, using microarray technology. The use of parametric non-linear regression models
provides a more precise description of expression profiles, reducing the "noise" of the raw data to
produce a clear "signal" given by the fitted curve, and describing each profile with a small number of
biologically interpretable parameters. This approach then allows the direct comparison and clustering of
the shapes of response patterns between genes and potentially enables a greater exploration and
interpretation of the biological processes driving gene expression.
Results: Quantitative reverse transcriptase PCR-derived time-course data of genes were modelled. "Splitline"
or "broken-stick" regression identified the initial time of gene up-regulation, enabling the classification
of genes into those with primary and secondary responses. Five-day profiles were modelled using the
biologically-oriented, critical exponential curve, y(t) = A + (B + Ct)Rt + ε. This non-linear regression
approach allowed the expression patterns for different genes to be compared in terms of curve shape,
time of maximal transcript level and the decline and asymptotic response levels. Three distinct regulatory
patterns were identified for the five genes studied. Applying the regression modelling approach to
microarray-derived time course data allowed 11% of the Escherichia coli features to be fitted by an
exponential function, and 25% of the Rattus norvegicus features could be described by the critical
exponential model, all with statistical significance of p < 0.05.
Conclusion: The statistical non-linear regression approaches presented in this study provide detailed
biologically oriented descriptions of individual gene expression profiles, using biologically variable data to
generate a set of defining parameters. These approaches have application to the modelling and greater
interpretation of profiles obtained across a wide range of platforms, such as microarrays. Through careful
choice of appropriate model forms, such statistical regression approaches allow an improved comparison
of gene expression profiles, and may provide an approach for the greater understanding of common
regulatory mechanisms between genes
New approaches to investigating the function of mycelial networks
Fungi play a key role in ecosystem nutrient cycles by scavenging, concentrating, translocating and redistributing nitrogen. To quantify and predict fungal nitrogen redistribution, and assess the importance of the integrity of fungal networks in soil for ecosystem function, we need better understanding of the structures and processes involved. Until recently nitrogen translocation has been experimentally intractable owing to the lack of a suitable radioisotope tracer for nitrogen, and the impossibility of observing nitrogen translocation in real time under realistic conditions. We have developed an imaging method for recording the magnitude and direction of amino acid flow through the whole mycelial network as it captures, assimilates and channels its carbon and nitrogen resources, while growing in realistically heterogeneous soil microcosms. Computer analysis and modeling, based on these digitized video records, can reveal patterns in transport that suggest experimentally testable hypotheses. Experimental approaches that we are developing include genomics and stable isotope NMR to investigate where in the system nitrogen compounds are being acquired and stored, and where they are mobilized for transport or broken down. The results are elucidating the interplay between environment, metabolism, and the development and function of transport networks as mycelium forages in soil. The highly adapted and selected foraging networks of fungi may illuminate fundamental principles applicable to other supply networks
Characterization of serine proteinase expression in agaricus bisporus and coprinopsis cinerea by using green fluorescent protein and the A. bisporus SPR1 Promoter
The Agaricus bisporus serine proteinase 1 (SPR1) appears to be significant in both mycelial nutrition and senescence of the fruiting body. We report on the construction of an SPR promoter::green fluorescent protein (GFP) fusion cassette, pGreen_hph1_SPR_GFP, for the investigation of temporal and developmental expression of SPR1 in homobasidiomycetes and to determine how expression is linked to physiological and environmental stimuli. Monitoring of A. bisporus pGreen_hph1_SPR_GFP transformants on media rich in ammonia or containing different nitrogen sources demonstrated that SPR1 is produced in response to available nitrogen. In A. bisporus fruiting bodies, GFP activity was localized to the stipe of postharvest senescing sporophores. pGreen_hph1_SPR_GFP was also transformed into the model basidiomycete Coprinopsis cinerea. Endogenous C. cinerea proteinase activity was profiled during liquid culture and fruiting body development. Maximum activity was observed in the mature cap, while activity dropped during autolysis. Analysis of the C. cinerea genome revealed seven genes showing significant homology to the A. bisporus SPR1 and SPR2 genes. These genes contain the aspartic acid, histidine, and serine residues common to serine proteinases. Analysis of the promoter regions revealed at least one CreA and several AreA regulatory motifs in all sequences. Fruiting was induced in C. cinerea dikaryons, and fluorescence was determined in different developmental stages. GFP expression was observed throughout the life cycle, demonstrating that serine proteinase can be active in all stages of C. cinerea fruiting body development. Serine proteinase expression (GFP fluorescence) was most concentrated during development of young tissue, which may be indicative of high protein turnover during cell differentiatio
Profound and Sustained Reduction in Chlamydia trachomatis in The Gambia: A Five-Year Longitudinal Study of Trachoma Endemic Communities
Trachoma is the most common infectious cause of blindness worldwide. Mass antibiotic treatment with azithromycin is used to control ocular Chlamydia trachomatis infection. There is uncertainty over how frequently and for how long treatment is needed, particularly in low prevalence settings. This study examines the effect of a single round of treatment on clinical disease and infection in a cluster of trachoma endemic Gambian villages over a five-year period. These villages had good water supplies and sanitation improved part way through the study. We found treatment was followed by a marked decline in infection prevalence (by PCR) to less than 1%. The decline in prevalence of active disease in children was less marked. Several villages had a prevalence of active trachoma in 1 to 9 year old children of greater than 10% during the follow-up period, mostly in the absence of detectable infection. The implication of this study is that a single, high coverage mass treatment may be sufficient to control C. trachomatis infection in a low prevalence setting, particularly when combined with environmental measures to limit transmission. However, relying on clinical signs to guide treatment decisions is likely to lead to significant amounts of over treatment where current guidelines are implemented
The INNs and outs of antibody nonproprietary names
An important step in drug development is the assignment of an International Nonproprietary Name (INN) by the World Health Organization (WHO) that provides healthcare professionals with a unique and universally available designated name to identify each pharmaceutical substance. Monoclonal antibody INNs comprise a –mab suffix preceded by a substem indicating the antibody type, e.g., chimeric (-xi-), humanized (-zu-), or human (-u-). The WHO publishes INN definitions that specify how new monoclonal antibody therapeutics are categorized and adapts the definitions to new technologies. However, rapid progress in antibody technologies has blurred the boundaries between existing antibody categories and created a burgeoning array of new antibody formats. Thus, revising the INN system for antibodies is akin to aiming for a rapidly moving target. The WHO recently revised INN definitions for antibodies now to be based on amino acid sequence identity. These new definitions, however, are critically flawed as they are ambiguous and go against decades of scientific literature. A key concern is the imposition of an arbitrary threshold for identity against human germline antibody variable region sequences. This leads to inconsistent classification of somatically mutated human antibodies, humanized antibodies as well as antibodies derived from semi-synthetic/synthetic libraries and transgenic animals. Such sequence-based classification implies clear functional distinction between categories (e.g., immunogenicity). However, there is no scientific evidence to support this. Dialog between the WHO INN Expert Group and key stakeholders is needed to develop a new INN system for antibodies and to avoid confusion and miscommunication between researchers and clinicians prescribing antibodies
On the differences in the vertical distribution of modeled aerosol optical depth over the southeastern Atlantic
The southeastern Atlantic is home to an expansive smoke aerosol plume overlying a large cloud deck for approximately a third of the year. The aerosol plume is mainly attributed to the extensive biomass burning activities that occur in southern Africa. Current Earth system models (ESMs) reveal significant differences in their estimates of regional aerosol radiative effects over this region. Such large differences partially stem from uncertainties in the vertical distribution of aerosols in the troposphere. These uncertainties translate into different aerosol optical depths (AODs) in the planetary boundary layer (PBL) and the free troposphere (FT). This study examines differences of AOD fraction in the FT and AOD differences among ESMs (WRF-CAM5, WRF-FINN, GEOS-Chem, EAM-E3SM, ALADIN, GEOS-FP, and MERRA-2) and aircraft-based measurements from the NASA ObseRvations of Aerosols above CLouds and their intEractionS (ORACLES) field campaign. Models frequently define the PBL as the well-mixed surface-based layer, but this definition misses the upper parts of decoupled PBLs, in which most low-level clouds occur. To account for the presence of decoupled boundary layers in the models, the height of maximum vertical gradient of specific humidity profiles from each model is used to define PBL heights. Results indicate that the monthly mean contribution of AOD in the FT to the total-column AOD ranges from 44 % to 74 % in September 2016 and from 54 % to 71 % in August 2017 within the region bounded by 25∘ S–0∘ N–S and 15∘ W–15∘ E (excluding land) among the ESMs. ALADIN and GEOS-Chem show similar aerosol plume patterns to a derived above-cloud aerosol product from the Moderate Resolution Imaging Spectroradiometer (MODIS) during September 2016, but none of the models show a similar above-cloud plume pattern to MODIS in August 2017. Using the second-generation High Spectral Resolution Lidar (HSRL-2) to derive an aircraft-based constraint on the AOD and the fractional AOD, we found that WRF-CAM5 produces 40 % less AOD than those from the HSRL-2 measurements, but it performs well at separating AOD fraction between the FT and the PBL. AOD fractions in the FT for GEOS-Chem and EAM-E3SM are, respectively, 10 % and 15 % lower than the AOD fractions from the HSRL-2. Their similar mean AODs reflect a cancellation of high and low AOD biases. Compared with aircraft-based observations, GEOS-FP, MERRA-2, and ALADIN produce 24 %–36 % less AOD and tend to misplace more aerosols in the PBL. The models generally underestimate AODs for measured AODs that are above 0.8, indicating their limitations at reproducing high AODs. The differences in the absolute AOD, FT AOD, and the vertical apportioning of AOD in different models highlight the need to continue improving the accuracy of modeled AOD distributions. These differences affect the sign and magnitude of the net aerosol radiative forcing, especially when aerosols are in contact with clouds.</p
Fucosylation of Hla-DRB1 Regulates CD4+ T Cell-Mediated Anti-melanoma Immunity and Enhances Immunotherapy Efficacy
Immunotherapy efficacy is limited in melanoma, and combinations of immunotherapies with other modalities have yielded limited improvements but also adverse events requiring cessation of treatment. In addition to ineffective patient stratification, efficacy is impaired by paucity of intratumoral immune cells (itICs); thus, effective strategies to safely increase itICs are needed. We report that dietary administration of l-fucose induces fucosylation and cell surface enrichment of the major histocompatibility complex (MHC)-II protein HLA-DRB1 in melanoma cells, triggering CD4+ T cell-mediated increases in itICs and anti-tumor immunity, enhancing immune checkpoint blockade responses. Melanoma fucosylation and fucosylated HLA-DRB1 associate with intratumoral T cell abundance and anti-programmed cell death protein 1 (PD1) responder status in patient melanoma specimens, suggesting the potential use of melanoma fucosylation as a strategy for stratifying patients for immunotherapies. Our findings demonstrate that fucosylation is a key mediator of anti-tumor immunity and, importantly, suggest that l-fucose is a powerful agent for safely increasing itICs and immunotherapy efficacy in melanoma
Numbers are not the whole story: a qualitative exploration of barriers and facilitators to increased physical activity in a primary care based walking intervention.
BACKGROUND: The majority of mid-life and older adults in the UK are not achieving recommended physical activity levels and inactivity is associated with many health problems. Walking is a safe, appropriate exercise. The PACE-UP trial sought to increase walking through the structured use of a pedometer and handbook, with and without support from a practice nurse trained in behaviour change techniques (BCTs). Understanding barriers and facilitators to engagement with a primary care based physical activity intervention is essential for future trials and programmes.
METHODS: We conducted semi-structured telephone interviews using a topic guide with purposive samples of participants who did and did not increase their walking from both intervention groups. Interviews were audio-recorded, transcribed and coded independently by researchers prior to performing a thematic analysis. Responsiveness to the specific BCTs used was also analysed.
RESULTS: Forty-three trial participants were interviewed in early 2014. Almost all felt they had benefitted, irrespective of their change in step-count, and that primary care was an appropriate setting.Important facilitators included a desire for a healthy lifestyle, improved physical health, enjoyment of walking in the local environment, having a flexible routine allowing for an increase in walking, appropriate self and external monitoring and support from others.Important barriers included physical health problems, an inflexible routine, work and other commitments, the weather and a mistrust of the monitoring equipment.BCTs that were reported to have the most impact included: providing information about behaviour-health link; prompting self-monitoring and review of goals and outcomes; providing feedback; providing specific information about how to increase walking; planning social support/change; and relapse prevention. Rewards were unhelpful.
CONCLUSIONS: Despite our expectation that there would be a difference between the experiences of those who did and did not objectively increase their walking, we found that most participants considered themselves to have succeeded in the trial and benefitted from taking part. Barriers and facilitators were similar across demographic groups and trial outcomes. Findings indicated several BCTs on which PA trial and programme planners could focus efforts with the expectation of greatest impact as well as strong support for primary care as an appropriate venue
Recommended from our members
Antibody Engineering & Therapeutics 2016: The Antibody Society's annual meeting, December 11–15, 2016, San Diego, CA
ABSTRACT Antibody Engineering & Therapeutics, the largest meeting devoted to antibody science and technology and the annual meeting of The Antibody Society, will be held in San Diego, CA on December 11-15, 2016. Each of 14 sessions will include six presentations by leading industry and academic experts. In this meeting preview, the session chairs discuss the relevance of their topics to current and future antibody therapeutics development. Session topics include bispecifics and designer polyclonal antibodies; antibodies for neurodegenerative diseases; the interface between passive and active immunotherapy; antibodies for non-cancer indications; novel antibody display, selection and screening technologies; novel checkpoint modulators / immuno-oncology; engineering antibodies for T-cell therapy; novel engineering strategies to enhance antibody functions; and the biological Impact of Fc receptor engagement. The meeting will open with keynote speakers Dennis R. Burton (The Scripps Research Institute), who will review progress toward a neutralizing antibody-based HIV vaccine; Olivera J. Finn, (University of Pittsburgh School of Medicine), who will discuss prophylactic cancer vaccines as a source of therapeutic antibodies; and Paul Richardson (Dana-Farber Cancer Institute), who will provide a clinical update on daratumumab for multiple myeloma. In a featured presentation, a representative of the World Health Organization's INN expert group will provide a perspective on antibody naming. “Antibodies to watch in 2017” and progress on The Antibody Society's 2016 initiatives will be presented during the Society's special session. In addition, two pre-conference workshops covering ways to accelerate antibody drugs to the clinic and the applications of next-generation sequencing in antibody discovery and engineering will be held on Sunday December 11, 2016
- …