570 research outputs found
New pixelized Micromegas detector for the COMPASS experiment
New Micromegas (Micro-mesh gaseous detectors) are being developed in view of
the future physics projects planned by the COMPASS collaboration at CERN.
Several major upgrades compared to present detectors are being studied:
detectors standing five times higher luminosity with hadron beams, detection of
beam particles (flux up to a few hundred of kHz/mm^2, 10 times larger than for
the present detectors) with pixelized read-out in the central part, light and
integrated electronics, and improved robustness. Studies were done with the
present detectors moved in the beam, and two first pixelized prototypes are
being tested with muon and hadron beams in real conditions at COMPASS. We
present here this new project and report on two series of tests, with old
detectors moved into the beam and with pixelized prototypes operated in real
data taking condition with both muon and hadron beams.Comment: 11 pages, 5 figures, proceedings to the Micro-Pattern Gaseous
Detectors conference (MPGD2009), 12-15 June 2009, Kolympari, Crete, Greece
Minor details added and language corrections don
New pixelized Micromegas detector with low discharge rate for the COMPASS experiment
New Micromegas (Micro-mesh gaseous detectors) are being developed in view of
the future physics projects planned by the COMPASS collaboration at CERN.
Several major upgrades compared to present detectors are being studied:
detectors standing five times higher luminosity with hadron beams, detection of
beam particles (flux up to a few hundred of kHz/mm^{2}, 10 times larger than
for the present Micromegas detectors) with pixelized read-out in the central
part, light and integrated electronics, and improved robustness. Two solutions
of reduction of discharge impact have been studied, with Micromegas detectors
using resistive layers and using an additional GEM foil. Performance of such
detectors has also been measured. A large size prototypes with nominal active
area and pixelized read-out has been produced and installed at COMPASS in 2010.
In 2011 prototypes featuring an additional GEM foil, as well as an resistive
prototype, are installed at COMPASS and preliminary results from those
detectors presented very good performance. We present here the project and
report on its status, in particular the performance of large size prototypes
with an additional GEM foil.Comment: 11 pages, 5 figures, proceedings to the Micro-Pattern Gaseous
Detectors conference (MPGD2011), 29-31 August 2011, Kobe, Japa
Constraints on the Nucleon Strange Form Factors at Q2 ∼ 0.1 GeV2
We report the most precise measurement to date of a parity-violating asymmetry in elastic electron–proton scattering. The measurement was carried out with a beam energy of 3.03 GeV and a scattering angle (θlab) = 6.0○ , with the result A PV = ( − 1.14 ± 0.24 ( stat ) ± 0.06 ( syst ) ) × 10−6 . From this we extract, at Q2 = 0.099 GeV2 , the strange form factor combination GsE + 0.080 GsM = 0.030 ± 0.025 ( stat ) ± 0.006 ( syst ) ± 0.012 ( FF ) where the first two errors are experimental and the last error is due to the uncertainty in the neutron electromagnetic form factor. This result significantly improves current knowledge of GsE and GsM at Q2 ∼ 0.1 GeV2 . A consistent picture emerges when several measurements at about the same Q2 value are combined: GsE is consistent with zero while positive values are favored for GsM, though GsE = GsM = 0 is compatible with the data at 95% C.L
Validity of physical activity monitors during daily life in patients with COPD.
Symptoms during physical activity (PA) and physical inactivity are COPD. Our aim was to evaluate the validity and usability of six activity in patients with COPD against the doubly labelled water (DLW) indirect calorimetry method.Eighty COPD patients (age 68+/-6 years, FEV1 57+/-19% predicted) recruited in four centres each wore simultaneously three or six commercially available monitors validated in chronic conditions for consecutive days. A priori validity criteria were defined. These ability to explain total energy expenditure (TEE) variance through regression analysis, using TEE as the dependent variable with total body (TBW) plus several PA monitors outputs as independent variables; and with DLW measured activity energy expenditure (AEE).The Actigraph GT3X DynaPort MoveMonitor best explained the majority of the TEE variance not explained by TBW (53% and 70% respectively) and showed the most correlations with AEE (r=0.71 p<0.001, r=0.70 p<0.0001, of this study should guide users in choosing valid activity monitors for or for clinical use in patients with chronic diseases such as COPD
Precision Measurement of the Neutron Spin Asymmetries and Spin-dependent Structure Functions in the Valence Quark Region
We report on measurements of the neutron spin asymmetries and
polarized structure functions at three kinematics in the deep
inelastic region, with , 0.47 and 0.60 and , 3.5 and 4.8
(GeV/c), respectively. These measurements were performed using a 5.7 GeV
longitudinally-polarized electron beam and a polarized He target. The
results for and at are consistent with previous world
data and, at the two higher points, have improved the precision of the
world data by about an order of magnitude. The new data show a zero
crossing around and the value at is significantly positive.
These results agree with a next-to-leading order QCD analysis of previous world
data. The trend of data at high agrees with constituent quark model
predictions but disagrees with that from leading-order perturbative QCD (pQCD)
assuming hadron helicity conservation. Results for and have a
precision comparable to the best world data in this kinematic region. Combined
with previous world data, the moment was evaluated and the new result
has improved the precision of this quantity by about a factor of two. When
combined with the world proton data, polarized quark distribution functions
were extracted from the new values based on the quark parton
model. While results for agree well with predictions from various
models, results for disagree with the leading-order pQCD
prediction when hadron helicity conservation is imposed.Comment: A typing error in A_\parallel(3He) at x=0.47 in Table VII of Phys.
Rev. C has been noticed and correcte
Parity-Violating Electron Scattering from 4He and the Strange Electric Form Factor of the Nucleon
We have measured the parity-violating electroweak asymmetry in the elastic
scattering of polarized electrons from ^4He at an average scattering angle
= 5.7 degrees and a four-momentum transfer Q^2 = 0.091 GeV^2. From
these data, for the first time, the strange electric form factor of the nucleon
G^s_E can be isolated. The measured asymmetry of A_PV = (6.72 +/- 0.84 (stat)
+/- 0.21 (syst) parts per million yields a value of G^s_E = -0.038 +/- 0.042
(stat) +/- 0.010 (syst), consistent with zero
Constraints on the Nucleon Strange Form Factors at Q^2 ~ 0.1 GeV^2
We report the most precise measurement to date of a parity-violating
asymmetry in elastic electron-proton scattering. The measurement was carried
out with a beam energy of 3.03 GeV and a scattering angle =6
degrees, with the result A_PV = -1.14 +/- 0.24 (stat) +/- 0.06 (syst) parts per
million. From this we extract, at Q^2 = 0.099 GeV^2, the strange form factor
combination G_E^s + 0.080 G_M^s = 0.030 +/- 0.025 (stat) +/- 0.006 (syst) +/-
0.012 (FF) where the first two errors are experimental and the last error is
due to the uncertainty in the neutron electromagnetic form factor. This result
significantly improves current knowledge of G_E^s and G_M^s at Q^2 ~0.1 GeV^2.
A consistent picture emerges when several measurements at about the same Q^2
value are combined: G_E^s is consistent with zero while G_M^s prefers positive
values though G_E^s=G_M^s=0 is compatible with the data at 95% C.L.Comment: minor wording changes for clarity, updated references, dropped one
figure to improve focu
Deletion and Down-Regulation of HRH4 Gene in Gastric Carcinomas: A Potential Correlation with Tumor Progression
Background: Histamine is an established growth factor for gastrointestinal malignancies. The effect of histamine is largely determined locally by the histamine receptor expression pattern. Histamine receptor H4 (HRH4), the newest member of the histamine receptor family, is positively expressed on the epithelium of the gastrointestinal tract, and its function remains to be elucidated. Previously, we reported the decreased expression of HRH4 in colorectal cancers and revealed its correlation with tumor proliferation. In the current study, we aimed to investigate the abnormalities of HRH4 gene in gastric carcinomas (GCs). Methodology/Principal Findings: We analyzed H4R expression in collected GC samples by quantitative PCR, Western blot analysis, and immunostaining. Our results showed that the protein and mRNA levels of HRH4 were reduced in some GC samples, especially in advanced GC samples. Copy number decrease of HRH4 gene was observed (17.6%, 23 out of 131), which was closely correlated with the attenuated expression of H4R. In vitro studies, using gastric cancer cell lines, showed that the alteration of HRH4 expression on gastric cancer cells influences tumor growth upon exposure to histamine. Conclusions/Significance: We show for the first time that deletion of HRH4 gene is present in GC cases and is closely correlated with attenuated gene expression. Down-regulation of HRH4 in gastric carcinomas plays a role in histaminemediate
The Polarised Valence Quark Distribution from semi-inclusive DIS
The semi-inclusive difference asymmetry A^{h^{+}-h^{-}} for hadrons of
opposite charge has been measured by the COMPASS experiment at CERN. The data
were collected in the years 2002-2004 using a 160 GeV polarised muon beam
scattered off a large polarised ^6LiD target and cover the range 0.006 < x <
0.7 and 1 < Q^2 < 100 (GeV/c)^2. In leading order QCD (LO) the asymmetry
A_d^{h^{+}-h^{-}} measures the valence quark polarisation and provides an
evaluation of the first moment of Delta u_v + Delta d_v which is found to be
equal to 0.40 +- 0.07 (stat.) +- 0.05 (syst.) over the measured range of x at
Q^2 = 10 (GeV/c)^2. When combined with the first moment of g_1^d previously
measured on the same data, this result favours a non-symmetric polarisation of
light quarks Delta u-bar = - Delta d-bar at a confidence level of two standard
deviations, in contrast to the often assumed symmetric scenario Delta u-bar =
Delta d-bar = Delta s-bar = Delta s.Comment: 7 pages, 3 figures, COMPASS, revised: details added, author list
update
- …