13,497 research outputs found
Comparisons of the execution times and memory requirements for high-speed discrete fourier transforms and fast fourier transforms, for the measurement of AC power harmonics
Conventional wisdom dictates that a Fast Fourier Transform (FFT) will be a more computationally effective method for measuring multiple harmonics than a Discrete Fourier Transform (DFT) approach. However, in this paper it is shown that carefully coded discrete transforms which distribute their computational load over many frames can be made to produce results in shorter execution times than the FFT approach, even for large number of harmonic measurement frequencies. This is because the execution time of the presented DFT actually rises with N and not the classical N2 value, while the execution time of the FFT rises with Nlog2N
Tradeoffs between AC power quality and DC bus ripple for 3-phase 3-wire inverter-connected devices within microgrids
Visions of future power systems contain high penetrations of inverters which are used to convert power from dc (direct current) to ac (alternating current) or vice versa. The behavior of these devices is dependent upon the choice and implementation of the control algorithms. In particular, there is a tradeoff between dc bus ripple and ac power quality. This study examines the tradeoffs. Four control modes are examined. Mathematical derivations are used to predict the key implications of each control mode. Then, an inverter is studied both in simulation and in hardware at the 10 kVA scale, in different microgrid environments of grid impedance and power quality. It is found that voltage-drive mode provides the best ac power quality, but at the expense of high dc bus ripple. Sinusoidal current generation and dual-sequence controllers provide relatively low dc bus ripple and relatively small effects on power quality. High-bandwidth dc bus ripple minimization mode works well in environments of low grid impedance, but is highly unsuitable within higher impedance microgrid environments and/or at low switching frequencies. The findings also suggest that the certification procedures given by G5/4, P29 and IEEE 1547 are potentially not adequate to cover all applications and scenarios
Non-circular features in Saturn's D ring: D68
D68 is a narrow ringlet located only 67,627 km (1.12 planetary radii) from
Saturn's spin axis. Images of this ringlet obtained by the Cassini spacecraft
reveal that this ringlet exhibits persistent longitudinal brightness variations
and a substantial eccentricity (ae=25+/-1 km). By comparing observations made
at different times, we confirm that the brightness variations revolve around
the planet at approximately the local orbital rate (1751.6 degrees/day), and
that the ringlet's pericenter precesses at 38.243+/-0.008 degrees/day,
consistent with the expected apsidal precession rate at this location due to
Saturn's higher-order gravitational harmonics. Surprisingly, we also find that
the ringlet's semi-major axis appears to be decreasing with time at a rate of
2.4+/-0.4 km/year between 2005 and 2013. A closer look at these measurements,
along with a consideration of earlier Voyager observations of this same
ringlet, suggests that the mean radius of D68 moves back and forth, perhaps
with a period of around 15 Earth years or about half a Saturn year. These
observations could place important constraints on both the ringlet's local
dynamical environment and the planet's gravitational field.Comment: 39 Pages, 11 Figures accepted for publication in Icarus Text slightly
modified to match corrections to proof
Benchmarking and optimisation of Simulink code using Real-Time Workshop and Embedded Coder for inverter and microgrid control applications
When creating software for a new power systems control or protection device, the use of auto-generated C code via MATLAB Simulink Real-Time Workshop and Embedded Coder toolboxes can be a sensible alternative to hand written C code. This approach offers the benefits of a simulation environment, platform independence and robust code. This paper briefly summarises recent experiences with this coding process including the pros and cons of such an approach. Extensive benchmarking activities are presented, together with descriptions of simple (but non-obvious) optimisations made as a result of the benchmarking. Examples include replacement of certain Simulink blocks with seemingly more complex blocks which execute faster. "S functions" are also designed for certain key algorithms. These must be fully "in-lined" to obtain the best speed performance. Together, these optimisations can lead to an increase in execution speed of more than 1.4x in a large piece of auto-generated C code. An example is presented, which carries out Fourier analysis of 3 signals at a common (variable) frequency. The overall speed improvement relative to the baseline is 2.3x, of which more than 1.4x is due to non-obvious improvements resulting from benchmarking activities. Such execution speed improvements allow higher frame rates or larger algorithms within inverters, drives, protection and control applications
Integration of a mean-torque diesel engine model into a hardware-in-the-loop shipboard network simulation using lambda tuning
This study describes the creation of a hardware-in-the-loop (HIL) environment for use in evaluating network architecture, control concepts and equipment for use within marine electrical systems. The environment allows a scaled hardware network to be connected to a simulation of a multi-megawatt marine diesel prime mover, coupled via a synchronous generator. This allows All-Electric marine scenarios to be investigated without large-scale hardware trials. The method of closing the loop between simulation and hardware is described, with particular reference to the control of the laboratory synchronous machine, which represents the simulated generator(s). The fidelity of the HIL simulation is progressively improved in this study. First, a faster and more powerful field drive is implemented to improve voltage tracking. Second, the phase tracking is improved by using two nested proportional–integral–derivative–acceleration controllers for torque control, tuned using lambda tuning. The HIL environment is tested using a scenario involving a large constant-power load step. This provides a very severe test of the HIL environment, and also reveals the potentially adverse effects of constant-power loads within marine power systems
Fabrication techniques developed for small- diameter, thin-wall tungsten and tungsten alloy tubing
Report describes methods for the fabrication of tungsten and tungsten alloys into small-diameter, thin-wall tubing of nuclear quality. The tungsten, or tungsten alloy tube blanks are produced by double extrusion. Plug-drawing has emerged as an excellent secondary fabrication technique for the reduction of the overall tube dimensions
Lunar mining of oxygen using fluorine
Experiments during the first year of the project were directed towards generating elemental fluorine via the electrolysis of anhydrous molten fluorides. Na2SiF6 was dissolved in either molten NaBF4 or a eutectic (minimum-melting) mixture of KF-LiF-NaF and electrolyzed between 450 and 600 C to Si metal at the cathode and F2 gas at the anode. Ar gas was continuously passed through the system and F2 was trapped in a KBr furnace. Various anode and cathode materials were investigated. Despite many experimental difficulties, the capability of the process to produce elemental fluorine was demonstrated
Quantum hierarchic models for information processing
Both classical and quantum computations operate with the registers of bits.
At nanometer scale the quantum fluctuations at the position of a given bit,
say, a quantum dot, not only lead to the decoherence of quantum state of this
bit, but also affect the quantum states of the neighboring bits, and therefore
affect the state of the whole register. That is why the requirement of reliable
separate access to each bit poses the limit on miniaturization, i.e, constrains
the memory capacity and the speed of computation. In the present paper we
suggest an algorithmic way to tackle the problem of constructing reliable and
compact registers of quantum bits. We suggest to access the states of quantum
register hierarchically, descending from the state of the whole register to the
states of its parts. Our method is similar to quantum wavelet transform, and
can be applied to information compression, quantum memory, quantum
computations.Comment: 14 pages, LaTeX, 1 eps figur
An ion ring in a linear multipole trap for optical frequency metrology
A ring crystal of ions trapped in a linear multipole trap is studied as a
basis for an optical frequency standard. The equilibrium conditions and cooling
possibilities are discussed through an analytical model and molecular dynamics
simulations. A configuration which reduces the frequency sensitivity to the
fluctuations of the number of trapped ions is proposed. The systematic shifts
for the electric quadrupole transition of calcium ions are evaluated for this
ring configuration. This study shows that a ring of 10 or 20 ions allows to
reach a short term stability better than for a single ion without introducing
limiting long term fluctuations
California Energy Commission Agricultural Peak Load Reduction Program Case Study: North Kern WSD
The North Kern Water Storage District (NKWSD) is located just north of Bakersfield in Kern County and encompasses nearly 60,000 acres. The district receives water from the Kern River as well as groundwater pumping to supply its users
- …