821 research outputs found

    Application of electron multiplying CCD technology in space instrumentation

    Get PDF
    Electron multiplying CCD (EMCCD) technology has found important initial applications in low light surveillance and photon starved scientific instrumentation. This paper discusses the attributes of the EMCCD which make it useful for certain space instruments, particularly those which are photon starved, and explores likely risks from the radiation expected in such instruments

    Development and Testing of a 2-D Transfer CCD

    Get PDF
    This paper describes the development, operation, and characterization of charge-coupled devices (CCDs) that feature an electrode structure that allows the transfer of charge both horizontally and vertically through the image area. Such devices have been termed two-dimensional (2-D) transfer CCDs (2DT CCDs), as opposed to the conventional devices, which might be called one-dimensional transfer CCDs, but in other respects are the same as conventional CCD devices. Batches of two different 2DT CCD test devices, featuring different electrode structures but with identical clocking operation in each case, were produced and tested. The methodology of 2-D charge transfer in each of the device types is described, followed by a presentation of test results from the new CCDs. The ability of both 2DT CCD transfer electrode schemes to successfully transfer charge in both horizontal and vertical directions in the image section of the devices has been proven, opening up potential new applications for 2DT CCD use

    Low noise charge injection in the CCD22

    Get PDF
    The inclusion of a charge injection structure on a charge coupled device (CCD) allows for the mitigation of charge transfer loss which can be caused by radiation induced charge trapping defects. Any traps present in the pixels of the CCD are filled by the injected charge as it is swept through the device and consequently, the charge transfer efficiency is improved in subsequently acquired images. To date, a number of different types of CCD have been manufactured featuring a variety of charge injection techniques. The e2v Technologies CCD22, used in the EPIC MOS focal plane instruments of XMM-Newton, is one such device and is the subject of this paper. A detailed understanding of charge injection operation and the use of charge injection to mitigate charge transfer losses resulting from radiation damage to CCDs will benefit a number of space projects planned for the future, including the ESA GAIA and X-ray Evolving Universe Spectrometry (XEUS) missions.The charge injection structure and mode of operation of the CCD22 are presented, followed by a detailed analysis of the uniformity and repeatability of the charge injection amplitude across the columns of the device. The effects of proton irradiation on the charge injection characteristics are also presented, in particular the effect of radiation induced bright pixels on the injected charge level

    Convergence of sparse variational inference in gaussian processes regression

    Get PDF
    Gaussian processes are distributions over functions that are versatile and mathematically convenient priors in Bayesian modelling. However, their use is often impeded for data with large numbers of observations, N, due to the cubic (in N) cost of matrix operations used in exact inference. Many solutions have been proposed that rely on M << N inducing variables to form an approximation at a cost of O(NM^2). While the computational cost appears linear in N, the true complexity depends on how M must scale with N to ensure a certain quality of the approximation. In this work, we investigate upper and lower bounds on how M needs to grow with N to ensure high quality approximations. We show that we can make the KL-divergence between the approximate model and the exact posterior arbitrarily small for a Gaussian-noise regression model with M<<N. Specifically, for the popular squared exponential kernel and D-dimensional Gaussian distributed covariates, M=O((log N)^D) suffice and a method with an overall computational cost of O(N(log N)^{2D}(\log\log N)^2) can be used to perform inference

    MOS CCDs for the wide field imager on the XEUS spacecraft

    Get PDF
    In recent years the XEUS mission concept has evolved and has been the subject of several industrial studies. The mission concept has now matured to the point that it could be proposed for a Phase A study and subsequent flight programme. The key feature of XEUS will be its X-ray optic with collecting area ~30-100x that of XMM. The mission is envisaged at an orbit around the L2 point in space, and is formed from two spacecraft; one for the mirrors, and the other for the focal plane detectors. With a focal length of 50m, the plate scale of the optic is 6.5x that of XMM, which using existing focal plane technology will reduce the effective field of view to a few arc minutes. Cryogenic instrumentation, with detector sizes of a few mm can only be used for narrow field studies of target objects, and a wide field instrument is under consideration using a DEPFET pixel array to image out to a diameter of 5 arcminutes, requiring an array of dimension 70mm. It is envisaged to extend this field of view possibly out to 15 arcminutes through the use of an outer detection ring comprised of MOS CCD

    A Relational Event Approach to Modeling Behavioral Dynamics

    Full text link
    This chapter provides an introduction to the analysis of relational event data (i.e., actions, interactions, or other events involving multiple actors that occur over time) within the R/statnet platform. We begin by reviewing the basics of relational event modeling, with an emphasis on models with piecewise constant hazards. We then discuss estimation for dyadic and more general relational event models using the relevent package, with an emphasis on hands-on applications of the methods and interpretation of results. Statnet is a collection of packages for the R statistical computing system that supports the representation, manipulation, visualization, modeling, simulation, and analysis of relational data. Statnet packages are contributed by a team of volunteer developers, and are made freely available under the GNU Public License. These packages are written for the R statistical computing environment, and can be used with any computing platform that supports R (including Windows, Linux, and Mac).

    Social Network Analytics for Advanced Bibliometrics: Referring to Actor Roles of Management Journals instead of Journal Rankings

    Get PDF
    Impact factors are commonly used to assess journals relevance. This implies a simplified view on science as a single-stage linear process. Therefore, few top-tier journals are one-sidedly favored as outlets, such that submissions to top-tier journals explode whereas others are short of submissions. Consequently, the often claimed gap between research and practical application in application-oriented disciplines as business administration is not narrowing but becoming entrenched. A more complete view of the scientific system is needed to fully capture journals ´ contributions in the development of a discipline. Simple citation measures, as e.g. citation counts, are commonly used to evaluate scientific work. There are many known dangers of miss- or over-interpretation of such simple data and this paper adds to this discussion by developing an alternative way of interpreting a discipline based on the positions and roles of journals in their wider network. Specifically, we employ ideas from the network analytic approach. Relative positions allow the direct comparison between different fields. Similarly, the approach provides a better understanding of the diffusion process of knowledge as it differentiates positions in the knowledge creation process. We demonstrate how different modes of social capital create different patterns of action that require a multidimensional evaluation of scientific research. We explore different types of social capital and intertwined relational structures of actors to compare journals with different bibliometric profiles. Ultimately, we develop a multi-dimensional evaluation of actor roles based upon multiple indicators and we test this approach by classifying management journals based on their bibliometric environment

    Coherent spinor dynamics in a spin-1 Bose condensate

    Full text link
    Collisions in a thermal gas are perceived as random or incoherent as a consequence of the large numbers of initial and final quantum states accessible to the system. In a quantum gas, e.g. a Bose-Einstein condensate or a degenerate Fermi gas, the phase space accessible to low energy collisions is so restricted that collisions be-come coherent and reversible. Here, we report the observation of coherent spin-changing collisions in a gas of spin-1 bosons. Starting with condensates occupying two spin states, a condensate in the third spin state is coherently and reversibly created by atomic collisions. The observed dynamics are analogous to Josephson oscillations in weakly connected superconductors and represent a type of matter-wave four-wave mixing. The spin-dependent scattering length is determined from these oscillations to be -1.45(18) Bohr. Finally, we demonstrate coherent control of the evolution of the system by applying differential phase shifts to the spin states using magnetic fields.Comment: 19 pages, 3 figure

    Construct-level predictive validity of educational attainment and intellectual aptitude tests in medical student selection: meta-regression of six UK longitudinal studies

    Get PDF
    Background: Measures used for medical student selection should predict future performance during training. A problem for any selection study is that predictor-outcome correlations are known only in those who have been selected, whereas selectors need to know how measures would predict in the entire pool of applicants. That problem of interpretation can be solved by calculating construct-level predictive validity, an estimate of true predictor-outcome correlation across the range of applicant abilities. Methods: Construct-level predictive validities were calculated in six cohort studies of medical student selection and training (student entry, 1972 to 2009) for a range of predictors, including A-levels, General Certificates of Secondary Education (GCSEs)/O-levels, and aptitude tests (AH5 and UK Clinical Aptitude Test (UKCAT)). Outcomes included undergraduate basic medical science and finals assessments, as well as postgraduate measures of Membership of the Royal Colleges of Physicians of the United Kingdom (MRCP(UK)) performance and entry in the Specialist Register. Construct-level predictive validity was calculated with the method of Hunter, Schmidt and Le (2006), adapted to correct for right-censorship of examination results due to grade inflation. Results: Meta-regression analyzed 57 separate predictor-outcome correlations (POCs) and construct-level predictive validities (CLPVs). Mean CLPVs are substantially higher (.450) than mean POCs (.171). Mean CLPVs for first-year examinations, were high for A-levels (.809; CI: .501 to .935), and lower for GCSEs/O-levels (.332; CI: .024 to .583) and UKCAT (mean = .245; CI: .207 to .276). A-levels had higher CLPVs for all undergraduate and postgraduate assessments than did GCSEs/O-levels and intellectual aptitude tests. CLPVs of educational attainment measures decline somewhat during training, but continue to predict postgraduate performance. Intellectual aptitude tests have lower CLPVs than A-levels or GCSEs/O-levels. Conclusions: Educational attainment has strong CLPVs for undergraduate and postgraduate performance, accounting for perhaps 65% of true variance in first year performance. Such CLPVs justify the use of educational attainment measure in selection, but also raise a key theoretical question concerning the remaining 35% of variance (and measurement error, range restriction and right-censorship have been taken into account). Just as in astrophysics, ‘dark matter’ and ‘dark energy’ are posited to balance various theoretical equations, so medical student selection must also have its ‘dark variance’, whose nature is not yet properly characterized, but explains a third of the variation in performance during training. Some variance probably relates to factors which are unpredictable at selection, such as illness or other life events, but some is probably also associated with factors such as personality, motivation or study skills
    corecore