1,241 research outputs found
Underutilized resources for studying the evolution of invasive species during their introduction, establishment, and lag phases
The early phases of biological invasions are poorly understood. In particular, during the introduction, establishment, and possible lag phases, it is unclear to what extent evolution must take place for an introduced species to transition from established to expanding. In this study, we highlight three disparate data sources that can provide insights into evolutionary processes associated with invasion success: biological control organisms, horticultural introductions, and natural history collections. All three data sources potentially provide introduction dates, information about source populations, and genetic and morphological samples at different time points along the invasion trajectory that can be used to investigate preadaptation and evolution during the invasion process, including immediately after introduction and before invasive expansion. For all three data sources, we explore where the data are held, their quality, and their accessibility. We argue that these sources could find widespread use with a few additional pieces of data, such as voucher specimens collected at certain critical time points during biocontrol agent quarantine, rearing, and release and also for horticultural imports, neither of which are currently done consistently. In addition, public access to collected information must become available on centralized databases to increase its utility in ecological and evolutionary research
A 4-Planet System Orbiting the K0V Star HD 141399
We present precision radial velocity (RV) data sets from Keck-HIRES and from
Lick Observatory's new Automated Planet Finder Telescope and Levy Spectrometer
on Mt. Hamilton that reveal a multiple-planet system orbiting the nearby,
slightly evolved, K-type star HD 141399. Our 91 observations over 10.5 years
suggest the presence of four planets with orbital periods of 94.35, 202.08,
1070.35, and 3717.35 days and minimum masses of 0.46, 1.36, 1.22, and 0.69
Jupiter masses respectively. The orbital eccentricities of the three inner
planets are small, and the phase curves are well sampled. The inner two planets
lie just outside the 2:1 resonance, suggesting that the system may have
experienced dissipative evolution during the protoplanetary disk phase. The
fourth companion is a Jupiter-like planet with a Jupiter-like orbital period.
Its orbital eccentricity is consistent with zero, but more data will be
required for an accurate eccentricity determination.Comment: 11 pages, 13 figures, To appear in the Astrophysical Journa
Crew Exploration Vehicle Ascent Abort Overview
One of the primary design drivers for NASA's Crew Exploration Vehicle (CEV) is to ensure crew safety. Aborts during the critical ascent flight phase require the design and operation of CEV systems to escape from the Crew Launch Vehicle and return the crew safely to the Earth. To accomplish this requirement of continuous abort coverage, CEV ascent abort modes are being designed and analyzed to accommodate the velocity, altitude, atmospheric, and vehicle configuration changes that occur during ascent. The analysis involves an evaluation of the feasibility and survivability of each abort mode and an assessment of the abort mode coverage. These studies and design trades are being conducted so that more informed decisions can be made regarding the vehicle abort requirements, design, and operation. This paper presents an overview of the CEV, driving requirements for abort scenarios, and an overview of current ascent abort modes. Example analysis results are then discussed. Finally, future areas for abort analysis are addressed
Recommended from our members
Optimized modeling of Gaia-Hipparcos astrometry for the detection of the smallest cold Jupiter and confirmation of seven low mass companions
© 2021 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society. This is the accepted manuscript version of an article which has been published in final form at https://doi.org/10.1093/mnras/stab2225To fully constrain the orbits of low mass circumstellar companions, we conduct combined analyses of the radial velocity data as well as the Gaia and Hipparcos astrometric data for eight nearby systems. Our study shows that companion-induced position and proper motion differences between Gaia and Hipparcos are significant enough to constrain orbits of low mass companions to a precision comparable with previous combined analyses of direct imaging and radial velocity data. We find that our method is robust to whether we use Gaia DR2 or Gaia EDR3, as well as whether we use all of the data, or just proper motion differences. In particular, we fully characterize the orbits of HD 190360 b and HD 16160 C for the first time. With a mass of 1.80.2 and an effective temperature of 123-176 K and orbiting around a Sun-like star, HD 190360 b is the smallest Jupiter-like planet with well-constrained mass and orbit, belonging to a small sample of fully characterized Jupiter analogs. It is separated from its primary star by 0.25 and thus may be suitable for direct imaging by the CGI instrument of the Roman Space Telescope.Peer reviewe
FPGA-accelerated machine learning inference as a service for particle physics computing
New heterogeneous computing paradigms on dedicated hardware with increased
parallelization, such as Field Programmable Gate Arrays (FPGAs), offer exciting
solutions with large potential gains. The growing applications of machine
learning algorithms in particle physics for simulation, reconstruction, and
analysis are naturally deployed on such platforms. We demonstrate that the
acceleration of machine learning inference as a web service represents a
heterogeneous computing solution for particle physics experiments that
potentially requires minimal modification to the current computing model. As
examples, we retrain the ResNet-50 convolutional neural network to demonstrate
state-of-the-art performance for top quark jet tagging at the LHC and apply a
ResNet-50 model with transfer learning for neutrino event classification. Using
Project Brainwave by Microsoft to accelerate the ResNet-50 image classification
model, we achieve average inference times of 60 (10) milliseconds with our
experimental physics software framework using Brainwave as a cloud (edge or
on-premises) service, representing an improvement by a factor of approximately
30 (175) in model inference latency over traditional CPU inference in current
experimental hardware. A single FPGA service accessed by many CPUs achieves a
throughput of 600--700 inferences per second using an image batch of one,
comparable to large batch-size GPU throughput and significantly better than
small batch-size GPU throughput. Deployed as an edge or cloud service for the
particle physics computing model, coprocessor accelerators can have a higher
duty cycle and are potentially much more cost-effective.Comment: 16 pages, 14 figures, 2 table
TESS Discovery of an ultra-short-period planet around the nearby M dwarf LHS 3844
Data from the newly-commissioned \textit{Transiting Exoplanet Survey
Satellite} (TESS) has revealed a "hot Earth" around LHS 3844, an M dwarf
located 15 pc away. The planet has a radius of and
orbits the star every 11 hours. Although the existence of an atmosphere around
such a strongly irradiated planet is questionable, the star is bright enough
(, ) for this possibility to be investigated with transit and
occultation spectroscopy. The star's brightness and the planet's short period
will also facilitate the measurement of the planet's mass through Doppler
spectroscopy.Comment: 10 pages, 4 figures. Submitted to ApJ Letters. This letter makes use
of the TESS Alert data, which is currently in a beta test phase, using data
from the pipelines at the TESS Science Office and at the TESS Science
Processing Operations Cente
Shear-induced Notch-Cx37-p27 axis arrests endothelial cell cycle to enable arterial specification
Establishment of a functional vascular network is rate-limiting in embryonic development, tissue repair and engineering. During blood vessel formation, newly generated endothelial cells rapidly expand into primitive plexi that undergo vascular remodeling into circulatory networks, requiring coordinated growth inhibition and arterial-venous specification. Whether the mechanisms controlling endothelial cell cycle arrest and acquisition of specialized phenotypes are interdependent is unknown. Here we demonstrate that fluid shear stress, at arterial flow magnitudes, maximally activates NOTCH signaling, which upregulates GJA4 (commonly, Cx37) and downstream cell cycle inhibitor CDKN1B (p27). Blockade of any of these steps causes hyperproliferation and loss of arterial specification. Re-expression of GJA4 or CDKN1B, or chemical cell cycle inhibition, restores endothelial growth control and arterial gene expression. Thus, we elucidate a mechanochemical pathway in which arterial shear activates a NOTCH-GJA4-CDKN1B axis that promotes endothelial cell cycle arrest to enable arterial gene expression. These insights will guide vascular regeneration and engineering
- …