32 research outputs found

    Synthesis of 5-Hydroxyectoine from Ectoine: Crystal Structure of the Non-Heme Iron(II) and 2-Oxoglutarate-Dependent Dioxygenase EctD

    Get PDF
    As a response to high osmolality, many microorganisms synthesize various types of compatible solutes. These organic osmolytes aid in offsetting the detrimental effects of low water activity on cell physiology. One of these compatible solutes is ectoine. A sub-group of the ectoine producer's enzymatically convert this tetrahydropyrimidine into a hydroxylated derivative, 5-hydroxyectoine. This compound also functions as an effective osmostress protectant and compatible solute but it possesses properties that differ in several aspects from those of ectoine. The enzyme responsible for ectoine hydroxylation (EctD) is a member of the non-heme iron(II)-containing and 2-oxoglutarate-dependent dioxygenases (EC 1.14.11). These enzymes couple the decarboxylation of 2-oxoglutarate with the formation of a high-energy ferryl-oxo intermediate to catalyze the oxidation of the bound organic substrate. We report here the crystal structure of the ectoine hydroxylase EctD from the moderate halophile Virgibacillus salexigens in complex with Fe3+ at a resolution of 1.85 Å. Like other non-heme iron(II) and 2-oxoglutarate dependent dioxygenases, the core of the EctD structure consists of a double-stranded β-helix forming the main portion of the active-site of the enzyme. The positioning of the iron ligand in the active-site of EctD is mediated by an evolutionarily conserved 2-His-1-carboxylate iron-binding motif. The side chains of the three residues forming this iron-binding site protrude into a deep cavity in the EctD structure that also harbours the 2-oxoglutarate co-substrate-binding site. Database searches revealed a widespread occurrence of EctD-type proteins in members of the Bacteria but only in a single representative of the Archaea, the marine crenarchaeon Nitrosopumilus maritimus. The EctD crystal structure reported here can serve as a template to guide further biochemical and structural studies of this biotechnologically interesting enzyme family

    Environmental Salinity Determines the Specificity and Need for Tat-Dependent Secretion of the YwbN Protein in Bacillus subtilis

    Get PDF
    Twin-arginine protein translocation (Tat) pathways are required for transport of folded proteins across bacterial, archaeal and chloroplast membranes. Recent studies indicate that Tat has evolved into a mainstream pathway for protein secretion in certain halophilic archaea, which thrive in highly saline environments. Here, we investigated the effects of environmental salinity on Tat-dependent protein secretion by the Gram-positive soil bacterium Bacillus subtilis, which encounters widely differing salt concentrations in its natural habitats. The results show that environmental salinity determines the specificity and need for Tat-dependent secretion of the Dyp-type peroxidase YwbN in B. subtilis. Under high salinity growth conditions, at least three Tat translocase subunits, namely TatAd, TatAy and TatCy, are involved in the secretion of YwbN. Yet, a significant level of Tat-independent YwbN secretion is also observed under these conditions. When B. subtilis is grown in medium with 1% NaCl or without NaCl, the secretion of YwbN depends strictly on the previously described “minimal Tat translocase” consisting of the TatAy and TatCy subunits. Notably, in medium without NaCl, both tatAyCy and ywbN mutants display significantly reduced exponential growth rates and severe cell lysis. This is due to a critical role of secreted YwbN in the acquisition of iron under these conditions. Taken together, our findings show that environmental conditions, such as salinity, can determine the specificity and need for the secretion of a bacterial Tat substrate

    Synthesis and Uptake of the Compatible Solutes Ectoine and 5-Hydroxyectoine by Streptomyces coelicolor A3(2) in Response to Salt and Heat Stresses▿

    No full text
    Streptomyces coelicolor A3(2) synthesizes ectoine and 5-hydroxyectoine upon the imposition of either salt (0.5 M NaCl) or heat stress (39°C). The cells produced the highest cellular levels of these compatible solutes when both stress conditions were simultaneously imposed. Protection against either severe salt (1.2 M NaCl) or heat stress (39°C) or a combination of both environmental cues could be accomplished by adding low concentrations (1 mM) of either ectoine or 5-hydroxyectoine to S. coelicolor A3(2) cultures. The best salt and heat stress protection was observed when a mixture of ectoine and 5-hydroxyectoine (0.5 mM each) was provided to the growth medium. Transport assays with radiolabeled ectoine demonstrated that uptake was triggered by either salt or heat stress. The most effective transport and accumulation of [14C]ectoine by S. coelicolor A3(2) were achieved when both environmental cues were simultaneously applied. Our results demonstrate that the accumulation of the compatible solutes ectoine and 5-hydroxyectoine allows S. coelicolor A3(2) to fend off the detrimental effects of both high salinity and high temperature on cell physiology. We also characterized the enzyme (EctD) required for the synthesis of 5-hydroxyectoine from ectoine, a hydroxylase of the superfamily of the non-heme-containing iron(II)- and 2-oxoglutarate-dependent dioxygenases (EC 1.14.11). The gene cluster (ectABCD) encoding the enzymes for ectoine and 5-hydroxyectoine biosynthesis can be found in the genome of S. coelicolor A3(2), Streptomyces avermitilis, Streptomyces griseus, Streptomyces scabiei, and Streptomyces chrysomallus, suggesting that these compatible solutes play an important role as stress protectants in the genus Streptomyces

    A Specialized Aspartokinase Enhances the Biosynthesis of the Osmoprotectants Ectoine and Hydroxyectoine in Pseudomonas stutzeriA1501▿ †

    No full text
    The compatible solutes ectoine and hydroxyectoine are widely produced by bacteria as protectants against osmotic and temperature stress. l-Aspartate-beta-semialdehyde is used as the precursor molecule for ectoine/hydroxyectoine biosynthesis that is catalyzed by the EctABCD enzymes. l-Aspartate-beta-semialdehyde is a central intermediate in different biosynthetic pathways and is produced from l-aspartate by aspartokinase (Ask) and aspartate-semialdehyde-dehydrogenase (Asd). Ask activity is typically stringently regulated by allosteric control to avoid gratuitous synthesis of aspartylphosphate. Many organisms have evolved multiple forms of aspartokinase, and feedback regulation of these specialized Ask enzymes is often adapted to the cognate biochemical pathways. The ectoine/hydroxyectoine biosynthetic genes (ectABCD) are followed in a considerable number of microorganisms by an askgene (ask_ect), suggesting that Ask_Ect is a specialized enzyme for this osmoadaptive biosynthetic pathway. However, none of these Ask_Ect enzymes have been functionally characterized. Pseudomonas stutzeriA1501 synthesizes both ectoine and hydroxyectoine in response to increased salinity, and it possesses two Ask enzymes: Ask_Lys and Ask_Ect. We purified both Ask enzymes and found significant differences with regard to their allosteric control: Ask_LysC was inhibited by threonine and in a concerted fashion by threonine and lysine, whereas Ask_Ect showed inhibition only by threonine. The ectABCD_askgenes from P. stutzeriA1501 were cloned and functionally expressed in Escherichia coli, and this led to osmostress protection. An E. colistrain carrying the plasmid-based ectABCD_askgene cluster produced significantly more ectoine/hydroxyectoine than a strain expressing the ectABCDgene cluster alone. This finding suggests a specialized role for Ask_Ect in ectoine/hydroxyectoine biosynthesis

    Osmoprotection of Bacillus subtilis through Import and Proteolysis of Proline-Containing Peptides

    No full text
    Zaprasis A, Brill J, Thüring M, et al. Osmoprotection of Bacillus subtilis through Import and Proteolysis of Proline-Containing Peptides. Applied and environmental microbiology. 2013;79(2):576-587.Bacillus subtilis can attain cellular protection against the detrimental effects of high osmolarity through osmotically induced de novo synthesis and uptake of the compatible solute l-proline. We have now found that B. subtilis can also exploit exogenously provided proline-containing peptides of various lengths and compositions as osmoprotectants. Osmoprotection by these types of peptides is generally dependent on their import via the peptide transport systems (Dpp, Opp, App, and DtpT) operating in B. subtilis and relies on their hydrolysis to liberate proline. The effectiveness with which proline-containing peptides confer osmoprotection varies considerably, and this can be correlated with the amount of the liberated and subsequently accumulated free proline by the osmotically stressed cell. Through gene disruption experiments, growth studies, and the quantification of the intracellular proline pool, we have identified the PapA (YqhT) and PapB (YkvY) peptidases as responsible for the hydrolysis of various types of Xaa-Pro dipeptides and Xaa-Pro-Xaa tripeptides. The PapA and PapB peptidases possess overlapping substrate specificities. In contrast, osmoprotection by peptides of various lengths and compositions with a proline residue positioned at their N terminus was not affected by defects in the PapA and PapB peptidases. Taken together, our data provide new insight into the physiology of the osmotic stress response of B. subtilis. They illustrate the flexibility of this ubiquitously distributed microorganism to effectively exploit environmental resources in its acclimatization to sustained high-osmolarity surroundings through the accumulation of compatible solutes
    corecore