439 research outputs found

    Kaehler submanifolds with parallel pluri-mean curvature

    Get PDF
    We investigate the local geometry of a class of K\"ahler submanifolds MRnM \subset \R^n which generalize surfaces of constant mean curvature. The role of the mean curvature vector is played by the (1,1)(1,1)-part (i.e. the dzidzˉjdz_id\bar z_j-components) of the second fundamental form α\alpha, which we call the pluri-mean curvature. We show that these K\"ahler submanifolds are characterized by the existence of an associated family of isometric submanifolds with rotated second fundamental form. Of particular interest is the isotropic case where this associated family is trivial. We also investigate the properties of the corresponding Gauss map which is pluriharmonic.Comment: Plain TeX, 21 page

    Lazy pattern matching in the ML language

    Full text link

    Fibrational induction meets effects

    Get PDF
    This paper provides several induction rules that can be used to prove properties of effectful data types. Our results are semantic in nature and build upon Hermida and Jacobs’ fibrational formulation of induction for polynomial data types and its extension to all inductive data types by Ghani, Johann, and Fumex. An effectful data type μ(TF) is built from a functor F that describes data, and a monad T that computes effects. Our main contribution is to derive induction rules that are generic over all functors F and monads T such that μ(TF) exists. Along the way, we also derive a principle of definition by structural recursion for effectful data types that is similarly generic. Our induction rule is also generic over the kinds of properties to be proved: like the work on which we build, we work in a general fibrational setting and so can accommodate very general notions of properties, rather than just those of particular syntactic forms. We give examples exploiting the generality of our results, and show how our results specialize to those in the literature, particularly those of Filinski and Støvring

    On the twistor space of pseudo-spheres

    Get PDF
    We give a new proof that the sphere S^6 does not admit an integrable orthogonal complex structure, as in \cite{LeBrun}, following the methods from twistor theory. We present the twistor space of a pseudo-sphere S^{2n}_{2q}=SO_{2p+1,2q}/SO_{2p,2q} as a pseudo-K\"ahler symmetric space. We then consider orthogonal complex structures on the pseudo-sphere, only to prove such a structure cannot exist.Comment: Added the MSC's hoping Arxiv will "run" a better distribuition through Subj-class's. The article has 20 page

    On the Lagrangian structure of integrable hierarchies

    Get PDF
    We develop the concept of pluri-Lagrangian structures for integrable hierarchies. This is a continuous counterpart of the pluri-Lagrangian (or Lagrangian multiform) theory of integrable lattice systems. We derive the multi-time Euler Lagrange equations in their full generality for hierarchies of two-dimensional systems, and construct a pluri-Lagrangian formulation of the potential Korteweg-de Vries hierarchy.Comment: 29 page

    Automated verification of shape and size properties via separation logic.

    Get PDF
    Despite their popularity and importance, pointer-based programs remain a major challenge for program verification. In this paper, we propose an automated verification system that is concise, precise and expressive for ensuring the safety of pointer-based programs. Our approach uses user-definable shape predicates to allow programmers to describe a wide range of data structures with their associated size properties. To support automatic verification, we design a new entailment checking procedure that can handle well-founded inductive predicates using unfold/fold reasoning. We have proven the soundness and termination of our verification system, and have built a prototype system

    New constructions of twistor lifts for harmonic maps

    Get PDF
    We show that given a harmonic map φ\varphi from a Riemann surface to a classical compact simply connected inner symmetric space, there is a J2J_2-holomorphic twistor lift of φ\varphi (or its negative) if and only if it is nilconformal. In the case of harmonic maps of finite uniton number, we give algebraic formulae in terms of holomorphic data which describes their extended solutions. In particular, this gives explicit formulae for the twistor lifts of all harmonic maps of finite uniton number from a surface to the above symmetric spaces.Comment: Some minor changes and a correction of Example 8.

    Willmore Surfaces of Constant Moebius Curvature

    Full text link
    We study Willmore surfaces of constant Moebius curvature KK in S4S^4. It is proved that such a surface in S3S^3 must be part of a minimal surface in R3R^3 or the Clifford torus. Another result in this paper is that an isotropic surface (hence also Willmore) in S4S^4 of constant KK could only be part of a complex curve in C2R4C^2\cong R^4 or the Veronese 2-sphere in S4S^4. It is conjectured that they are the only examples possible. The main ingredients of the proofs are over-determined systems and isoparametric functions.Comment: 16 pages. Mistakes occured in the proof to the main theorem (Thm 3.6) has been correcte
    corecore