325 research outputs found

    Onset of incommensurability in quantum spin chains

    Full text link
    In quantum spin chains, it has been observed that the incommensurability occurs near valence-bond-solid (VBS)-type solvable points, and the correlation length becomes shortest at VBS-type points. Besides, the correlation function decays purely exponentially at VBS-type points, in contrast with the two-dimensional (2D) Ornstein-Zernicke type behavior in the other region with an excitation gap. We propose a mechanism to explain the onset of the incommensurability and the shortest correlation length at VBS-like points. This theory can be applicable for more general cases.Comment: 9 pages, 2 figure

    Large scale numerical investigation of excited states in poly(phenylene)

    Full text link
    A density matrix renormalisation group scheme is developed, allowing for the first time essentially exact numerical solutions for the important excited states of a realistic semi-empirical model for oligo-phenylenes. By monitoring the evolution of the energies with chain length and comparing them to the experimental absorption peaks of oligomers and thin films, we assign the four characteristic absorption peaks of phenyl-based polymers. We also determine the position and nature of the nonlinear optical states in this model.Comment: RevTeX, 10 pages, 4 eps figures included using eps

    Numerical and approximate analytical results for the frustrated spin-1/2 quantum spin chain

    Full text link
    We study the T=0T=0 frustrated phase of the 1D1D quantum spin-12\frac 12 system with nearest-neighbour and next-nearest-neighbour isotropic exchange known as the Majumdar-Ghosh Hamiltonian. We first apply the coupled-cluster method of quantum many-body theory based on a spiral model state to obtain the ground state energy and the pitch angle. These results are compared with accurate numerical results using the density matrix renormalisation group method, which also gives the correlation functions. We also investigate the periodicity of the phase using the Marshall sign criterion. We discuss particularly the behaviour close to the phase transitions at each end of the frustrated phase.Comment: 17 pages, Standard Latex File + 7 PostScript figures in separate file. Figures also can also be requested from [email protected]

    Breakdown of the Luttinger sum-rule at the Mott-Hubbard transition in the one-dimensional t1-t2 Hubbard model

    Full text link
    We investigate the momentum distribution function near the Mott-Hubbard transition in the one-dimensional t1-t2 Hubbard model (the zig-zag Hubbard chain), with the density-matrix renormalization-group technique. We show that for strong interactions the Mott-Hubbard transition occurs between the metallic-phase and an insulating dimerized phase with incommensurate spin excitations, suggesting a decoupling of magnetic and charge excitations not present in weak coupling. We illustrate the signatures for the Mott-Hubbard transition and the commensurate-incommensurate transition in the insulating spin-gapped state in their respective ground-state momentum distribution functions

    Reconstituted high-density lipoproteins promote wound repair and blood flow recovery in response to ischemia in aged mice

    Get PDF
    Background: The average population age is increasing and the incidence of age-related vascular complications is rising in parallel. Impaired wound healing and disordered ischemia-mediated angiogenesis are key contributors to age-impaired vascular complications that can lead to amputation. High-density lipoproteins (HDL) have vasculo-protective properties and augment ischemia-driven angiogenesis in young animals. We aimed to determine the effect of reconstituted HDL (rHDL) on aged mice in a murine wound healing model and the hindlimb ischemia (HLI) model. Methods: Murine wound healing model—24-month-old aged mice received topical application of rHDL (50 μg/wound/ day) or PBS (vehicle control) for 10 days following wounding. Murine HLI model—Femoral artery ligation was performed on 24-month-old mice. Mice received rHDL (40 mg/kg) or PBS, intravenously, on alternate days, 1 week pre-surgery and up to 21 days post ligation. For both models, blood flow perfusion was determined using laser Doppler perfusion imaging. Mice were sacrificed at 10 (wound healing) or 21 (HLI) days post-surgery and tissues were collected for histological and gene analyses. Results: Daily topical application of rHDL increased the rate of wound closure by Day 7 post-wounding (25 %, p < 0.05). Wound blood perfusion, a marker of angiogenesis, was elevated in rHDL treated wounds (Days 4–10 by 22–25 %, p < 0. 05). In addition, rHDL increased wound capillary density by 52.6 %. In the HLI model, rHDL infusions augmented blood flow recovery in ischemic limbs (Day 18 by 50 % and Day 21 by 88 %, p < 0.05) and prevented tissue necrosis and toe loss. Assessment of capillary density in ischemic hindlimb sections found a 90 % increase in rHDL infused animals. In vitro studies in fibroblasts isolated from aged mice found that incubation with rHDL was able to significantly increase the key pro-angiogenic mediator vascular endothelial growth factor (VEGF) protein (25 %, p < 0.05). Conclusion: rHDL can promote wound healing and wound angiogenesis, and blood flow recovery in response to ischemia in aged mice. Mechanistically, this is likely to be via an increase in VEGF. This highlights a potential role for HDL in the therapeutic modulation of age-impaired vascular complications

    Investigation of Quantum Phase Transitions using Multi-target DMRG Methods

    Full text link
    In this paper we examine how the predictions of conformal invariance can be widely exploited to overcome the difficulties of the density-matrix renormalization group near quantum critical points. The main idea is to match the set of low-lying energy levels of the lattice Hamiltonian, as a function of the system's size, with the spectrum expected for a given conformal field theory in two dimensions. As in previous studies this procedure requires an accurate targeting of various excited states. Here we discuss how this can be achieved within the DMRG algorithm by means of the recently proposed Thick-restart Lanczos method. As a nontrivial benchmark we use an anisotropic spin-1 Hamiltonian with special attention to the transitions from the Haldane phase. Nonetheless, we think that this procedure could be generally valid in the study of quantum critical phenomena.Comment: 14 pages, LaTeX2e (svjour class), 8 EPS figures. Same version as the published one, with new references and English corrections of the proofreade

    Evaluation of synthetic vascular grafts in a mouse carotid grafting model

    Get PDF
    Current animal models for the evaluation of synthetic grafts are lacking many of the molecular tools and transgenic studies available to other branches of biology. A mouse model of vascular grafting would allow for the study of molecular mechanisms of graft failure, including in the context of clinically relevant disease states. In this study, we comprehensively characterise a sutureless grafting model which facilitates the evaluation of synthetic grafts in the mouse carotid artery. Using conduits electrospun from polycaprolactone (PCL) we show the gradual development of a significant neointima within 28 days, found to be greatest at the anastomoses. Histological analysis showed temporal increases in smooth muscle cell and collagen content within the neointima, demonstrating its maturation. Endothelialisation of the PCL grafts, assessed by scanning electron microscopy (SEM) analysis and CD31 staining, was near complete within 28 days, together replicating two critical aspects of graft performance. To further demonstrate the potential of this mouse model, we used longitudinal non-invasive tracking of bone-marrow mononuclear cells from a transgenic mouse strain with a dual reporter construct encoding both luciferase and green fluorescent protein (GFP). This enabled characterisation of mononuclear cell homing and engraftment to PCL using bioluminescence imaging and histological staining over time (7, 14 and 28 days). We observed peak luminescence at 7 days post-graft implantation that persisted until sacrifice at 28 days. Collectively, we have established and characterised a high-throughput model of grafting that allows for the evaluation of key clinical drivers of graft performance.Alex H.P. Chan, Richard P. Tan, Praveesuda L. Michael, Bob S.L. Lee, Laura Z. Vanags, Martin K.C. Ng, Christina A. Bursill, Steven G. Wis

    A density matrix renormalisation group algorithm for quantum lattice systems with a large number of states per site

    Full text link
    A variant of White's density matrix renormalisation group scheme which is designed to compute low-lying energies of one-dimensional quantum lattice models with a large number of degrees of freedom per site is described. The method is tested on two exactly solvable models---the spin-1/2 antiferromagnetic Heisenberg chain and a dimerised XY spin chain. To illustrate the potential of the method, it is applied to a model of spins interacting with quantum phonons. It is shown that the method accurately resolves a number of energy gaps on periodic rings which are sufficiently large to afford an accurate investigation of critical properties via the use of finite-size scaling theory.Comment: RevTeX, 8 pages, 2 figure

    Excited states of linear polyenes

    Full text link
    We present density matrix renormalisation group calculations of the Pariser- Parr-Pople-Peierls model of linear polyenes within the adiabatic approximation. We calculate the vertical and relaxed transition energies, and relaxed geometries for various excitations on long chains. The triplet (3Bu+) and even- parity singlet (2Ag+) states have a 2-soliton and 4-soliton form, respectively, both with large relaxation energies. The dipole-allowed (1Bu-) state forms an exciton-polaron and has a very small relaxation energy. The relaxed energy of the 2Ag+ state lies below that of the 1Bu- state. We observe an attraction between the soliton-antisoliton pairs in the 2Ag+ state. The calculated excitation energies agree well with the observed values for polyene oligomers; the agreement with polyacetylene thin films is less good, and we comment on the possible sources of the discrepencies. The photoinduced absorption is interpreted. The spin-spin correlation function shows that the unpaired spins coincide with the geometrical soliton positions. We study the roles of electron-electron interactions and electron-lattice coupling in determining the excitation energies and soliton structures. The electronic interactions play the key role in determining the ground state dimerisation and the excited state transition energies.Comment: LaTeX, 15 pages, 9 figure
    • …
    corecore