10 research outputs found

    A paper based graphene-nanocauliflower hybrid composite for point of care biosensing

    Get PDF
    Graphene paper has diverse applications in printed circuit board electronics, bioassays, 3D cell culture, and biosensing. Although development of nanometal-graphene hybrid composites is commonplace in the sensing literature, to date there are only a few examples of nanometal-decorated graphene paper for use in biosensing. In this manuscript, we demonstrate the synthesis and application of Pt nano cauliflower-functionalized graphene paper for use in electrochemical biosensing of small molecules (glucose, acetone, methanol) or detection of pathogenic bacteria (Escherichia coli O157:H7). Raman spectroscopy, scanning electron microscopy and energy dispersive spectroscopy were used to show that graphene oxide deposited on nanocellulose crystals was partially reduced by both thermal and chemical treatment. Fractal platinum nanostructures were formed on the reduced graphene oxide paper, producing a conductive paper with an extremely high electroactive surface area, confirmed by cyclic voltammetry and electrochemical impedance spectroscopy. To show the broad applicability of the material, the platinum surface was functionalized with three different biomaterials: 1) glucose oxidase (via chitosan encapsulation); 2) a DNA aptamer (via covalent linking), or 3) a chemosensory protein (via his linking). We demonstrate the application of this device for point of care biosensing. The detection limit for both glucose (0.08 ± 0.02 μM) and E. coli O157:H7 (1.3 ± 0.1 CFU mL-1) were competitive with, or superior to, previously reported devices in the biosensing literature. The response time (6 sec for glucose and 10 min for E. coli) were also similar to silicon biochip and commercial electrode sensors. The results demonstrate that the nanocellulose-graphene-nanoplatinum material is an excellent paper-based platform for development of electrochemical biosensors targeting small molecules or whole cells for use in point of care biosensing

    Emerging technologies for non-invasive quantification of physiological oxygen transport in plants

    No full text
    Oxygen plays a critical role in plant metabolism, stress response/signaling, and adaptation to environmental changes (Lambers and Colmer, Plant Soil 274:7-15, 2005; Pitzschke et al., Antioxid Redox Signal 8:1757-1764, 2006; Van Breusegem et al., Plant Sci 161:405-414, 2001). Reactive oxygen species (ROS), by-products of various metabolic pathways in which oxygen is a key molecule, are produced during adaptation responses to environmental stress. While much is known about plant adaptation to stress (e.g., detoxifying enzymes, antioxidant production), the link between ROS metabolism, O-2 transport, and stress response mechanisms is unknown. Thus, non-invasive technologies for measuring O-2 are critical for understanding the link between physiological O-2 transport and ROS signaling. New non-invasive technologies allow real-time measurement of O-2 at the single cell and even organelle levels. This review briefly summarizes currently available (i.e., mainstream) technologies for measuring O-2 and then introduces emerging technologies for measuring O-2. Advanced techniques that provide the ability to non-invasively (i.e., non-destructively) measure O-2 are highlighted. In the near future, these non-invasive sensors will facilitate novel experimentation that will allow plant physiologists to ask new hypothesis-driven research questions aimed at improving our understanding of physiological O-2 transport

    A paper based graphene-nanocauliflower hybrid composite for point of care biosensing

    Get PDF
    Graphene paper has diverse applications in printed circuit board electronics, bioassays, 3D cell culture, and biosensing. Although development of nanometal-graphene hybrid composites is commonplace in the sensing literature, to date there are only a few examples of nanometal-decorated graphene paper for use in biosensing. In this manuscript, we demonstrate the synthesis and application of Pt nano cauliflower-functionalized graphene paper for use in electrochemical biosensing of small molecules (glucose, acetone, methanol) or detection of pathogenic bacteria (Escherichia coli O157:H7). Raman spectroscopy, scanning electron microscopy and energy dispersive spectroscopy were used to show that graphene oxide deposited on nanocellulose crystals was partially reduced by both thermal and chemical treatment. Fractal platinum nanostructures were formed on the reduced graphene oxide paper, producing a conductive paper with an extremely high electroactive surface area, confirmed by cyclic voltammetry and electrochemical impedance spectroscopy. To show the broad applicability of the material, the platinum surface was functionalized with three different biomaterials: 1) glucose oxidase (via chitosan encapsulation); 2) a DNA aptamer (via covalent linking), or 3) a chemosensory protein (via his linking). We demonstrate the application of this device for point of care biosensing. The detection limit for both glucose (0.08 ± 0.02 μM) and E. coli O157:H7 (1.3 ± 0.1 CFU mL-1) were competitive with, or superior to, previously reported devices in the biosensing literature. The response time (6 sec for glucose and 10 min for E. coli) were also similar to silicon biochip and commercial electrode sensors. The results demonstrate that the nanocellulose-graphene-nanoplatinum material is an excellent paper-based platform for development of electrochemical biosensors targeting small molecules or whole cells for use in point of care biosensing.This proceeding is published as Burrs, S.L., R. Sidhu, M. Bhargava, J. Kiernan-Lewis, N. Schwalb, Y. Rong, C. Gomes, J. Claussen, D.C. Vanegas, E.S. McLamore (2016). A paper based graphene-nanocauliflower hybrid composite for point of care biosensing. Proceedings of SPIE. Paper no. 9863 – 22, 1-7, April 17-21, 2016.doi: 10.1117/12.2223346. Posted with permission.</p

    Impedimetric aptamer-based biosensors: applications

    No full text

    Silk: A Promising Biomaterial Opening New Vistas Towards Affordable Healthcare Solutions

    No full text

    Canada

    No full text
    corecore