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ABSTRACT 
 

Graphene paper has diverse applications in printed circuit board electronics, bioassays, 3D cell culture, and 
biosensing. Although development of nanometal-graphene hybrid composites is commonplace in the sensing 
literature, to date there are only a few examples of nanometal-decorated graphene paper for use in biosensing. In this 
manuscript, we demonstrate the synthesis and application of Pt nano cauliflower-functionalized graphene paper for 
use in electrochemical biosensing of small molecules (glucose, acetone, methanol) or detection of pathogenic 
bacteria (Escherichia coli O157:H7). Raman spectroscopy, scanning electron microscopy and energy dispersive 
spectroscopy were used to show that graphene oxide deposited on nanocellulose crystals was partially reduced by 
both thermal and chemical treatment. Fractal platinum nanostructures were formed on the reduced graphene oxide 
paper, producing a conductive paper with an extremely high electroactive surface area, confirmed by cyclic 
voltammetry and electrochemical impedance spectroscopy. To show the broad applicability of the material, the 
platinum surface was functionalized with three different biomaterials: 1) glucose oxidase (via chitosan 
encapsulation); 2) a DNA aptamer (via covalent linking), or 3) a chemosensory protein (via his linking). We 
demonstrate the application of this device for point of care biosensing. The detection limit for both glucose (0.08 ± 
0.02 μM) and E. coli O157:H7 (1.3  ± 0.1 CFU mL-1) were competitive with, or superior to, previously reported 
devices in the biosensing literature. The response time (6 sec for glucose and 10 min for E. coli) were also similar to 
silicon biochip and commercial electrode sensors. The results demonstrate that the nanocellulose-graphene-
nanoplatinum material is an excellent paper-based platform for development of electrochemical biosensors targeting 
small molecules or whole cells for use in point of care biosensing. 
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1. INTRODUCTION 
 

A wide variety of paper-based biosensors such as colorimetric indicators (Suaifan et al. 2013), 
fluorescent/chemiluminescent immunoassays (Ge, Lei, and Zare 2012; Ellerbee et al. 2009), microfluidic arrays 
(Abe, Suzuki, and Citterio 2008; Chen et al. 2008; Liu and Crooks 2011), origami immunosensors (Li et al. 2014), 
and electrochemical biosensors (Dungchai, Chailapakul, and Henry 2009) have been developed. Development of 
conductive paper for electrochemical sensing based on conductive nanocarbon has been an area of extensive 
research for the last few decades. In electrochemical biosensing, the most common approach for fabricating sensors 
is to deposit a conducitve polymer or nanometal on the nanocarbon surface, facilitating adsorption of biorecognition 
agents and enhancing electron transport. Of the various metals used, nanoplatinum (nPt) has properties that make it 
particularly useful for biosensing (it is biocompatible, easily biofunctionalized, corrosion resistant, and stable).  
Here, we demonstrate the synthesis and application of platinum nanocauliflower-graphene hybrids on nanocellulose 
paper for use in point of care (POC) biosensing. We demonstrate use of this device in amperometric biosensing with 
an oxidase and a RNA aptamer for detection of glucose of Escherichia coli O157:H7, respectively (Fig 1).  
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Electrochemical Analysis  
All electrochemical analysis was performed in a 3D printed sample immobilization device (see supplemental Figure 
S1). Cyclic voltammetry (CV) and DC potential amperometry, (DCPA) were carried out using a potentiostat (BASi, 
West Lafayette, USA). Electrochemical impedance spectroscopy (EIS) was conducted on a EA163 potentiostat and 
an eDAQ ERZ100 (eDAQ, Colorado Springs, USA). 

 
3. RESULTS AND DISCUSSION 

Conductive paper  

Thermal reduction of the graphene-nanocellulose paper did not produce well-defined peak oxidative and reductive 
current for testing with ferrocyanide and also initial trials with the ferrocyanide/ferricyanide redox couple (Fig 1A). 
This indicates that the thermally reduced graphene oxide (TRG) paper had poor charge transfer. Chemical reduction 
of the graphene ink (AARG) increased the peak current response, but the change in redox peak was not significant 
(p=0.31; α=0.05). When platinum nanocauliflowers were deposited on the AARG graphene, well-defined reversible 
redox peaks were apparanet, and the peak current increased by 160 ± 12 μA (Fig 1A). Representative Nyquist plots 
(Fig 1B) and Bode magnitude plots (Fig 1C) show that TRG and AARG nanocellulose paper displayed 
characteristic Nyquist plots, with a discernable charge transfer resistance (Rct) at low frequency impedance values 
(indicated by the semicircular region), and a diffusion limited region at high impedance values (indicative of 
Warburg impedance). However, EIS for the Pt nano cauliflower-decorated AARG paper did not have an obvious 
semicircular region, which indicates the charge transfer resistance was negligible. For all samples, the solution 
resistance did not change significantly as expected. The Bode magnitude plots in Fig 2C indicate that charge 
transfer in the TRG and AARG conductive paper were diffusion limited. Conversely, deposition of Pt 
nanocauliflowers caused a significant reduction in diffusion limited charge transport. 
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