488 research outputs found

    Larval development of the intertidal barnacles Chthamalus stellatus and Chthamalus montagui

    Get PDF
    Two recently-distinguished species of Chthamalus (Cirripedia) are found on rocky shores in the north-eastern Atlantic: C. stellatus predominant on islands and headlands and C. montagui more abundant in bays. Larvae of the two species were produced in laboratory cultures to describe and compare the morphology and to allow identification in plankton samples. Nauplius larvae of C. stellatus are up to 30% larger than those of C. montagui. Differences in setation are minor. The two species are easily distinguishable from the size and shape of the cephalic shield. Chthamalus stellatus has a subcircular shield with longer body processes in later stages while C. montagui is more ovoid. The former develop more slowly in culture than the latter. Chthamalus stellatus larvae in a culture at 19 °C reached stage VI in 16 d compared to 11 d for larvae of C. montagui at the same temperature. The morphology and longer development time of C. stellatus larvae suggests adaptation to a more oceanic lifestyle and wider dispersal to reach more fragmented habitats than larvae of C. montagui. -------------------------------------------------------------------------------

    Appreciating interconnectivity between habitats is key to Blue Carbon management

    Get PDF
    We welcome the recent synthesis by Howard et al. (2017), which drew attention to the role of marine systems and natural carbon sequestration in the oceans as a fundamental aspect of climate-change mitigation. The importance of long-term carbon storage in marine habitats (ie “blue carbon”) is rapidly gaining recognition and is increasingly a focus of national and international attempts to mitigate rising atmospheric emissions of carbon dioxide. However, effectively managing blue carbon requires an appreciation of the inherent connectivity between marine populations and habitats. More so than their terrestrial counterparts, marine ecosystems are “open”, with high rates of transfer of energy, matter, genetic material, and species across regional seascapes (Kinlan and Gaines 2003). We suggest that policy frameworks, and the science underpinning them, should focus not only on carbon sink habitats but also on carbon source habitats, which play critical roles in marine carbon cycling and natural carbon sequestration in the oceans

    Mechanistic simulations of kelp populations in a dynamic landscape of light, temperature, and winter storms

    Get PDF
    \ua9 2023 The Author(s). Kelp forests are widely distributed across the coastal ocean, support high levels of biodiversity and primary productivity, and underpin a range of ecosystem services. Laminaria hyperborea is a forest-forming kelp species in the Northeast Atlantic that alters the local environment, providing biogenic structure for a diversity of associated organisms. Populations are strongly affected by light availability, temperature, and storm-related disturbance. We constructed a stage-based, two-season model of L. hyperborea populations along the coast of Great Britain and Ireland to predict biomass across a range of depths, drawing on extensive surveys and data from the literature. Population dynamics were driven by wave exposure, historic winter storm intensity, and simulated interannual variation in temperature and depth-attenuated light intensity, with density-dependent competition for light and space. High biomass was predicted in shallow depths across the domain on suitable substrate, with populations extending deeper in the north and west where light penetration was greater. Detritus production was heavily skewed across years, particularly at greater depths, with 10 % of years comprising more than 50 % of detritus on average below 10 m depth. Annual fluctuations in light and storm intensity produced opposing population oscillations with a ∌6-year period persisting for up to a decade but diminishing sharply with depth. Interannual variation in temperature had minimal impact. Biomass was most sensitive to survival and settlement rates, with negligible sensitivity to individual growth rates. This model highlights the need for an improved understanding of canopy and subcanopy mortality, particularly regarding increasingly frequent heatwaves. Estimations of kelp forest contributions to carbon sequestration should consider the high variability among years or risk underestimating the potential value of kelp forests. Process-based simulations of populations with realistic spatiotemporal environmental variability are a valuable approach to forecasting biotic responses to an increasingly extreme climate

    Shoreline sentinels of global change show the consequences of extreme events

    Get PDF
    Anthropogenic climate change along with the more frequent extreme weather it prompts, are having direct and indirect effects on distributions and abundance of species with consequence for community structure—especially if habitat providers are lost. Rocky shores have long been recognized as tractable experimental arenas for ecology contributing to theory. They have also emerged as important sentinel systems for tracking climate change responses of marine biodiversity and ecosystems, capitalizing on both historic broadscale surveys and time series. Combining these twin traditions is a powerful approach for better understanding and forecasting climate change impacts. Sustained observing allows extreme events to be detected and explored by in-parallel experimentation

    Impacts of Pervasive Climate Change and Extreme Events on Rocky Intertidal Communities: Evidence From Long-Term Data

    Get PDF
    Annual surveys of the abundance of intertidal invertebrates and macroalgae have been made at between 70 and 100 rocky intertidal time-series sites around the United Kingdom coastline since 2002 under the MarClim project. The data provide a unique opportunity to investigate the impacts of both pervasive climate change and their punctuation by extreme events on intertidal species. After the extreme storm events in the 2013/2014 winter season and the record heatwaves in the summers of 2018 and 2020, MarClim surveys recorded both physical and biological changes to rocky shore habitats. Subsequent surveys reassessed the effects on community structure via analysis of those species that resisted storm damage, those species that returned after the extreme storm events, and species that opportunistically occupied vacant habitat after storm-induced species loss. In addition, biannual storm damage surveys documenting communities recovery were carried out in the spring and winter of each year from 2014 to 2020 at three MarClim sites in north Cornwall (Crackington Haven, Trevone, and St. Ives), which experienced different types of abiotic and biotic damage resulting from these storms. Impacts of heatwaves and cold spells on the abundance of species were determined by regression on frequencies of event per year. Species of invertebrates and macroalgae generally declined in years of more frequent winter cold spells and summer heatwaves, while winter heatwaves and summer cold spells had similar numbers of positive and negative effects across species. Winter warm spells tended to have a more negative effect on cold-affinity species than on warm-affinity species. No abrupt shift was recorded after the 2013/2014 storms. Whilst a short-term change in some species was recorded in quantitative quadrat surveys, the biological communities returned to the long-term species composition and abundance within 2 years. The heatwave events caused sublethal heat damage in macroalgae, evidenced as dried areas of tissue on many individuals, with mortality-induced reductions in the abundance of only a few invertebrate species, recorded in Scotland and southwest England after the heatwave events in 2018 and 2020. MarClim and storm-damage surveys indicate that there have been no sustained impacts from either extreme thermal or storm events across the rocky intertidal communities, and biodiversity has not been significantly altered as a result. The abundance and biogeographical distributions of rocky intertidal species and communities around the United Kingdom are being driven by longer-term, large scale, pervasive change in environmental conditions, with a gradual shift towards dominance of Lusitanian species from the early 2000s in responses to warming of the marine climate

    Mechanistic simulations of kelp populations in a dynamic landscape of light, temperature, and winter storms

    Get PDF
    Kelp forests are widely distributed across the coastal ocean, support high levels of biodiversity and primary productivity, and underpin a range of ecosystem services. Laminaria hyperborea is a forest-forming kelp species in the Northeast Atlantic that alters the local environment, providing biogenic structure for a diversity of associated organisms. Populations are strongly affected by light availability, temperature, and storm-related disturbance. We constructed a stage-based, two-season model of L. hyperborea populations along the coast of Great Britain and Ireland to predict biomass across a range of depths, drawing on extensive surveys and data from the literature. Population dynamics were driven by wave exposure, historic winter storm intensity, and simulated interannual variation in temperature and depth-attenuated light intensity, with density-dependent competition for light and space. High biomass was predicted in shallow depths across the domain on suitable substrate, with populations extending deeper in the north and west where light penetration was greater. Detritus production was heavily skewed across years, particularly at greater depths, with 10 % of years comprising more than 50 % of detritus on average below 10 m depth. Annual fluctuations in light and storm intensity produced opposing population oscillations with a ∌6-year period persisting for up to a decade but diminishing sharply with depth. Interannual variation in temperature had minimal impact. Biomass was most sensitive to survival and settlement rates, with negligible sensitivity to individual growth rates. This model highlights the need for an improved understanding of canopy and subcanopy mortality, particularly regarding increasingly frequent heatwaves. Estimations of kelp forest contributions to carbon sequestration should consider the high variability among years or risk underestimating the potential value of kelp forests. Process-based simulations of populations with realistic spatiotemporal environmental variability are a valuable approach to forecasting biotic responses to an increasingly extreme climat

    Seasonal and spatial variability in rates of primary production and detritus release by intertidal stands of Laminaria digitata and Saccharina latissima on wave-exposed shores in the northeast Atlantic

    Get PDF
    Coastal habitats are increasingly recognized as fundamentally important components of global carbon cycles, but the rates of carbon flow associated with marine macrophytes are not well resolved for many species in many regions. We quantified density, rates of primary productivity, and detritus production of intertidal stands of two common intertidal kelp species—Laminaria digitata (oarweed) and Saccharina latissima (sugar kelp)—on four NE Atlantic rocky shores over 22 months. The density of L. digitata was greater at exposed compared to moderately exposed shores but remained consistently low for S. latissima throughout the survey period. Individual productivity and erosion rates of L. digitata did not differ between exposed and moderately exposed shores but differed across exposure levels throughout the year at moderately exposed sites only. Productivity and erosion of S. latissima remained low on moderately exposed shores and showed no clear seasonal pattern. Patterns of productivity and total detrital production (erosion and dislodgement) per m2 of both L. digitata and S. latissima followed closely that of densities per m2, peaking in May during both survey years. Temperature and light were key factors affecting the productivity rates of L. digitata and S. latissima. Erosion rates of L. digitata were affected by wave exposure, temperature, light, grazing, and epiphyte cover, but only temperature-affected erosion of S. latissima. Production of biomass and detritus was greater in L. digitata than in S. latissima and exceeded previous estimates for subtidal and warmer-water affinity kelp populations (e.g., Laminaria ochroleuca). These biogenic habitats are clearly important contributors to the coastal carbon cycle that have been overlooked previously and should be included in future ecosystem models. Further work is required to determine the areal extent of kelp stands in intertidal and shallow subtidal habitats, which is needed to scale up local production estimates to entire coastlines

    Ecological and methodological drivers of species' distribution and phenology responses to climate change

    Get PDF
    Climate change is shifting species’ distribution and phenology. Ecological traits, such as mobility or reproductive mode, explain variation in observed rates of shift for some taxa. However, estimates of relationships between traits and climate responses could be influenced by how responses are measured. We compiled a global data set of 651 published marine species’ responses to climate change, from 47 papers on distribution shifts and 32 papers on phenology change. We assessed the relative importance of two classes of predictors of the rate of change, ecological traits of the responding taxa and methodological approaches for quantifying biological responses. Methodological differences explained 22% of the variation in range shifts, more than the 7.8% of the variation explained by ecological traits. For phenology change, methodological approaches accounted for 4% of the variation in measurements, whereas 8% of the variation was explained by ecological traits. Our ability to predict responses from traits was hindered by poor representation of species from the tropics, where temperature isotherms are moving most rapidly. Thus, the mean rate of distribution change may be underestimated by this and other global syntheses. Our analyses indicate that methodological approaches should be explicitly considered when designing, analysing and comparing results among studies. To improve climate impact studies, we recommend that (1) reanalyses of existing time series state how the existing data sets may limit the inferences about possible climate responses; (2) qualitative comparisons of species’ responses across different studies be limited to studies with similar methodological approaches; (3) meta-analyses of climate responses include methodological attributes as covariates; and (4) that new time series be designed to include the detection of early warnings of change or ecologically relevant change. Greater consideration of methodological attributes will improve the accuracy of analyses that seek to quantify the role of climate change in species’ distribution and phenology changes
    • 

    corecore