49 research outputs found
Dynamics of spherically symmetric spacetimes: hydrodynamics and radiation
Using the 3+1 formalism of general relativity we obtain the equations
governing the dynamics of spherically symmetric spacetimes with arbitrary
sources. We then specialize for the case of perfect fluids accompanied by a
flow of interacting massless or massive particles (e.g. neutrinos) which are
described in terms of relativistic transport theory. We focus in three types of
coordinates: 1) isotropic gauge and maximal slicing, 2) radial gauge and polar
slicing, and 3) isotropic gauge and polar slicing.Comment: submitted to Phys. Rev. D, 46 pages, RevTex file, no figure
Relativistic Laser-Matter Interaction and Relativistic Laboratory Astrophysics
The paper is devoted to the prospects of using the laser radiation
interaction with plasmas in the laboratory relativistic astrophysics context.
We discuss the dimensionless parameters characterizing the processes in the
laser and astrophysical plasmas and emphasize a similarity between the laser
and astrophysical plasmas in the ultrarelativistic energy limit. In particular,
we address basic mechanisms of the charged particle acceleration, the
collisionless shock wave and magnetic reconnection and vortex dynamics
properties relevant to the problem of ultrarelativistic particle acceleration.Comment: 58 pages, 19 figure
Towards a self-deploying and gliding robot
Strategies for hybrid locomotion such as jumping and gliding are used in nature by many different animals for traveling over rough terrain. This combination of locomotion modes also allows small robots to overcome relatively large obstacles at a minimal energetic cost compared to wheeled or flying robots. In this chapter we describe the development of a novel palm sized robot of 10\,g that is able to autonomously deploy itself from ground or walls, open its wings, recover in midair and subsequently perform goal- directed gliding. In particular, we focus on the subsystems that will in the future be integrated such as a 1.5\,g microglider that can perform phototaxis; a 4.5\,g, bat-inspired, wing folding mechanism that can unfold in only 50\,ms; and a locust-inspired, 7\,g robot that can jump more than 27 times its own height. We also review the relevance of jumping and gliding for living and robotic systems and we highlight future directions for the realization of a fully integrated robot