22 research outputs found

    Nuclear membrane protein Lem2 regulates nuclear size through membrane flow

    Get PDF
    The size of the membrane-bound nucleus scales with cell size in a wide range of cell types but the mechanisms determining overall nuclear size remain largely unknown. Here we investigate the role of fission yeast inner nuclear membrane proteins in determining nuclear size, and propose that the Lap2-Emerin-Man1 domain protein Lem2 acts as a barrier to membrane flow between the nucleus and other parts of the cellular membrane system. Lem2 deletion increases membrane flow into and out of the nuclear envelope in response to changes in membrane synthesis and nucleocytoplasmic transport, altering nuclear size. The endoplasmic reticulum protein Lnp1 acts as a secondary barrier to membrane flow, functionally compensating for lack of Lem2. We propose that this is part of the mechanism that maintains nuclear size proportional to cellular membrane content and thus to cell size. Similar regulatory principles may apply to other organelles in the eukaryotic subcellular membrane network.This work was supported by the Francis Crick Institute [www.crick.ac.uk] (to P.N.), which receives its core funding from Cancer Research UK (FC01121), the UK Medical Research Council (FC01121), and the Wellcome Trust (FC01121). This work was also supported by the Wellcome Trust [grant number 093917] [www.wellcome.ac.uk] (to P.N.), JSPS Postdoctoral Fellowships for Research Abroad (to K.K.), JSPS KAKENHI [grants JP26660089 and 17K07756] [http://www.jsps.go.jp/j-grantsinaid/index.html] (to K.K.), JSPS Program for Advancing Strategic International Networks to Accelerate the Circulation of Talented Researchers (S2902) (to K.K.), the Hiroshima University Education and Research Support Foundation (to K.K.), the Breast Cancer Research Foundation (to P.N.) and The Lord Leonard and Lady Estelle Wolfson Foundation [www.lordandladywolfson.org.uk] (to P.N.).Supplementary Information accompanies this paper at https://doi.org/10.1038/s41467-019-09623-x

    Communication⇔identifying and managing reversible capacity losses that falsify cycle ageing tests of lithium-ion cells

    Get PDF
    We report on a cycle ageing study of commercial NCA/Gr+Si cells, in which reversible capacity fluctuations turn a central experimental finding upside down: an upper voltage limit of 4.1 V seems to cause faster degradation than going all the way to 4.2 V. The underlying effect is the reversible loss of lithium inventory into passive anode overhang areas. We demonstrate how the resulting artefact arises from a combination of slow transport processes and the related time periods spent in specific state-of-charge regions. We propose an alternative visualisation tool to identify and manage such artefacts, often neglected in typical ageing studies

    A lipocalin mediates unidirectional haem biomineralization in malaria parasites

    Get PDF
    During blood stage development, malaria parasites are challenged with the detoxification of enormous amounts of haem released during the proteolytic catabolism of erythrocytic haemoglobin. They tackle this problem by sequestering haem into bioinert crystals known as haemozoin. The mechanisms underlying this biomineralization process remain enigmatic. Here, we demonstrate that both rodent and human malaria parasite species secrete and internalize a lipocalin-like protein, PV5, to control haem crystallization. Transcriptional deregulation of PV5 in the rodent parasite Plasmodium berghei results in inordinate elongation of haemozoin crystals, while conditional PV5 inactivation in the human malaria agent Plasmodium falciparum causes excessive multi-directional crystal branching. Although haemoglobin processing remains unaffected, PV5-deficient parasites generate less haemozoin. Electron diffraction analysis indicates that despite the distinct changes in crystal morphology neither the crystalline order nor unit cell of haemozoin are affected by impaired PV5 function. Deregulation of PV5 expression renders P. berghei hypersensitive to the antimalarial drugs artesunate, chloroquine, and atovaquone, resulting in accelerated parasite clearance following drug treatment in vivo . Together, our findings demonstrate the Plasmodium -tailored role of a lipocalin family member in haemozoin formation and underscore the haem biomineralization pathway as an attractive target for therapeutic exploitation

    A lipocalin mediates unidirectional heme biomineralization in malaria parasites.

    Get PDF
    During blood-stage development, malaria parasites are challenged with the detoxification of enormous amounts of heme released during the proteolytic catabolism of erythrocytic hemoglobin. They tackle this problem by sequestering heme into bioinert crystals known as hemozoin. The mechanisms underlying this biomineralization process remain enigmatic. Here, we demonstrate that both rodent and human malaria parasite species secrete and internalize a lipocalin-like protein, PV5, to control heme crystallization. Transcriptional deregulation of PV5 in the rodent parasite Plasmodium berghei results in inordinate elongation of hemozoin crystals, while conditional PV5 inactivation in the human malaria agent Plasmodium falciparum causes excessive multidirectional crystal branching. Although hemoglobin processing remains unaffected, PV5-deficient parasites generate less hemozoin. Electron diffraction analysis indicates that despite the distinct changes in crystal morphology, neither the crystalline order nor unit cell of hemozoin are affected by impaired PV5 function. Deregulation of PV5 expression renders P. berghei hypersensitive to the antimalarial drugs artesunate, chloroquine, and atovaquone, resulting in accelerated parasite clearance following drug treatment in vivo. Together, our findings demonstrate the Plasmodium-tailored role of a lipocalin family member in hemozoin formation and underscore the heme biomineralization pathway as an attractive target for therapeutic exploitation

    Cellular electron tomography of the apical complex in the apicomplexan parasite Eimeria tenella shows a highly organised gateway for regulated secretion

    Get PDF
    The apical complex of apicomplexan parasites is essential for host cell invasion and intracellular survival and as the site of regulated exocytosis from specialised secretory organelles called rhoptries and micronemes. Despite its importance, there are few data on the three-dimensional organisation and quantification of these organelles within the apical complex or how they are trafficked to this specialised region of plasma membrane for exocytosis. In coccidian apicomplexans there is an additional tubulin-containing hollow barrel structure, the conoid, which provides a structural gateway for this specialised apical secretion. Using a combination of cellular electron tomography and serial block face-scanning electron microscopy (SBF-SEM) we have reconstructed the entire apical end of Eimeria tenella sporozoites; we report a detailed dissection of the three- dimensional organisation of the conoid and show there is high curvature of the tubulin-containing fibres that might be linked to the unusual comma-shaped arrangement of protofilaments. We quantified the number and location of rhoptries and micronemes within cells and show a highly organised gateway for trafficking and docking of rhoptries, micronemes and microtubule-associated vesicles within the conoid around a set of intra-conoidal microtubules. Finally, we provide ultrastructural evidence for fusion of rhoptries directly through the parasite plasma membrane early in infection and the presence of a pore in the parasitophorous vacuole membrane, providing a structural explanation for how rhoptry proteins may be trafficked between the parasite and the host cytoplasm

    Suramin exposure alters cellular metabolism and mitochondrial energy production in African trypanosomes

    Get PDF
    © 2020 Zoltner et al. Introduced about a century ago, suramin remains a frontline drug for the management of early-stage East African trypanosomiasis (sleeping sickness). Cellular entry into the causative agent, the protozoan parasite Trypanosoma brucei, occurs through receptor-mediated endocytosis involving the parasite's invariant surface glycoprotein 75 (ISG75), followed by transport into the cytosol via a lysosomal transporter. The molecular basis of the trypanocidal activity of suramin remains unclear, but some evidence suggests broad, but specific, impacts on trypanosome metabolism (i.e. polypharmacology). Here we observed that suramin is rapidly accumulated in trypanosome cells proportionally to ISG75 abundance. Although we found little evidence that suramin disrupts glycolytic or glycosomal pathways, we noted increased mitochondrial ATP production, but a net decrease in cellular ATP levels. Metabolomics highlighted additional impacts on mitochondrial metabolism, including partial Krebs' cycle activation and significant accumulation of pyruvate, corroborated by increased expression of mitochondrial enzymes and transporters. Significantly, the vast majority of suramin-induced proteins were normally more abundant in the insect forms compared with the blood stage of the parasite, including several proteins associated with differentiation. We conclude that suramin has multiple and complex effects on trypanosomes, but unexpectedly partially activates mitochondrial ATP-generating activity. We propose that despite apparent compensatory mechanisms in drug-challenged cells, the suramin-induced collapse of cellular ATP ultimately leads to trypanosome cell death

    Suramin exposure alters cellular metabolism and mitochondrial energy production in African trypanosomes

    Get PDF
    Introduced about a century ago, suramin remains a frontline drug for the management of early-stage East African trypanosomiasis (sleeping sickness). Cellular entry into the causative agent, the protozoan parasite Trypanosoma brucei, occurs through receptor-mediated endocytosis involving the parasite’s invariant surface glycoprotein 75 (ISG75), followed by transport into the cytosol via a lysosomal transporter. The molecular basis of the trypanocidal activity of suramin remains unclear, but some evidence suggests broad, but specific, impacts on trypanosome metabolism (i.e. polypharmacology). Here we observed that suramin is rapidly accumulated in trypanosome cells proportionally to ISG75 abundance. Although we found little evidence that suramin disrupts glycolytic or glycosomal pathways, we noted increased mitochondrial ATP production, but a net decrease in cellular ATP levels. Metabolomics highlighted additional impacts on mitochondrial metabolism, including partial Krebs’ cycle activation and significant accumulation of pyruvate, corroborated by increased expression of mitochondrial enzymes and transporters. Significantly, the vast majority of suramin-induced proteins were normally more abundant in the insect forms compared with the blood stage of the parasite, including several proteins associated with differentiation. We conclude that suramin has multiple and complex effects on trypanosomes, but unexpectedly partially activates mitochondrial ATP-generating activity. We propose that despite apparent compensatory mechanisms in drug-challenged cells, the suramin-induced collapse of cellular ATP ultimately leads to trypanosome cell death

    The ultrastructural morphology of Eimeria tenella exhibits striking natural variation and undergoes significant changes during the first few hours of infection

    No full text
    The data generated during this PhD provides novel insights into the biology of Eimeria parasites: protozoan organisms capable of causing enteric disease in a vast array of animals. Working with Eimeria tenella, a clinically and economically significant pathogen of chickens, I have quantified the fusion dynamics of the refractile bodies. Refractile bodies are non-membrane-bound organelles with immunogenic properties and unknown function. The structural and temporal dynamics of refractile body merger shares striking similarity with that of intrinsically disordered protein-containing droplet organelles; this comparison may help to direct future research into the character and function of these mysterious organelles. In an adjacent project, the organelle numbers and volumes for the E. tenella sporozoite stage were quantified. The resultant data shows a surprisingly high level of variability in cell morphometry; this could be due to genetic/epigenetic factors or may reflect an undiscovered maturation phase. The conoid is a cytoskeletal structure found in many important apicomplexan pathogens and is involved in host cell invasion and parasite motility. I have performed the first high resolution quantitative investigation of three-dimensional conoid structure and show that there is also a considerable level variability in conoid structure. Conoid fibre number was found to vary from 13 to 16 per conoid. This variation was seen in both freshly hatched and post-invasion sporozoites, suggesting that genetic factors are involved. Following analysis of structures within the conoid, my data suggests that secretory organelle protein release occurs through intra-conoidal transport, docking and fusion

    Do All Coccidia Follow the Same Trafficking Rules?

    No full text
    The Coccidia are a subclass of the Apicomplexa and include several genera of protozoan parasites that cause important diseases in humans and animals, with Toxoplasma gondii becoming the ‘model organism’ for research into the coccidian molecular and cellular processes. The amenability to the cultivation of T. gondii tachyzoites and the wide availability of molecular tools for this parasite have revealed many mechanisms related to their cellular trafficking and roles of parasite secretory organelles, which are critical in parasite-host interaction. Nevertheless, the extrapolation of the T. gondii mechanisms described in tachyzoites to other coccidian parasites should be done carefully. In this review, we considered published data from Eimeria parasites, a coccidian genus comprising thousands of species whose infections have important consequences in livestock and poultry. These studies suggest that the Coccidia possess both shared and diversified mechanisms of protein trafficking and secretion potentially linked to their lifecycles. Whereas trafficking and secretion appear to be well conversed prior to and during host-cell invasion, important differences emerge once endogenous development commences. Therefore, further studies to validate the mechanisms described in T. gondii tachyzoites should be performed across a broader range of coccidians (including T. gondii sporozoites). In addition, further genus-specific research regarding important disease-causing Coccidia is needed to unveil the individual molecular mechanisms of pathogenesis related to their specific lifecycles and hosts

    High-energy NCA cells on idle:anode versus cathode driven side reactions

    No full text
    We report on the first year of calendar ageing of commercial high‐energy 21700 lithium‐ion cells, varying over eight state of charge (SoC) and three temperature values. Lithium‐nickel‐cobalt‐aluminium oxide (NCA) and graphite with silicon suboxide (Gr‐SiOx) form cathodes and anodes of those cells, respectively. Degradation is fastest for cells at 70–80 % SoC according to monthly electrochemical check‐up tests. Cells kept at 100 % SoC do not show the fastest capacity fade but develop internal short circuits for temperatures T≥40 °C. Degradation is slowest for cells stored close to 0 % SoC at all temperatures. Rates of capacity fade and their temperature dependencies are distinctly different for SoC values below and above 60 %, respectively. Differential voltage analyses, apparent activation energy analysis, and endpoint slippage tracking provide useful insights into the degradation mechanisms and the respective roles of anode and cathode potential. We discuss how reversible losses of lithium might play a role in alleviating the rate of irreversible losses on commercial cells
    corecore