7,943 research outputs found
Ultra low power CMOS technology
This paper discusses the motivation, opportunities, and problems associated with implementing digital logic at very low voltages, including the challenge of making use of the available real estate in 3D multichip modules, energy requirements of very large neural networks, energy optimization metrics and their impact on system design, modeling problems, circuit design constraints, possible fabrication process modifications to improve performance, and barriers to practical implementation
Low power signal processing research at Stanford
This paper gives an overview of the research being conducted at Stanford University's Space, Telecommunications, and Radioscience Laboratory in the area of low energy computation. It discusses the work we are doing in large scale digital VLSI neural networks, interleaved processor and pipelined memory architectures, energy estimation and optimization, multichip module packaging, and low voltage digital logic
Cosmogenic C-14 in Antarctic and non-Antarctic meteorites and lunar samples
We were able to develop measurements of C-14 in meteorites as a useful tool for estimates of terrestrial age. Prior to this accomplishment, only a few measurements of C-14 terrestrial ages had been made. The sample sizes were larger, and there had been no systematic study of the various parameters affecting production of C-14, such as depth dependence, and the production cross sections for C-14 from spallation amounted to a few data points. Presently, C-14 ages are an accepted terrestrial age estimate in the meteorite community, whereas before this work the few data available were difficult to interpret. We have obtained terrestrial ages not only on groups of meteorites from different geographic areas but also information on unique meteorites from particularly interesting groups, such as meteorites originating from the Moon, or SNC meteorites, which many researchers believe are derived from Mars
From solid solution to cluster formation of Fe and Cr in -Zr
To understand the mechanisms by which Fe and Cr additions increase the
corrosion rate of irradiated Zr alloys, a combination of experimental (atom
probe tomography, x-ray diffraction and thermoelectric power measurements) and
modelling (density functional theory) techniques are employed to investigate
the non-equilibrium solubility and clustering of Fe and Cr in binary Zr alloys.
Cr occupies both interstitial and substitutional sites in the {\alpha}-Zr
lattice, Fe favours interstitial sites, and a low-symmetry site that was not
previously modelled is found to be the most favourable for Fe. Lattice
expansion as a function of alloying concentration (in the dilute regime) is
strongly anisotropic for Fe additions, expanding the -axis while contracting
the -axis. Defect clusters are observed at higher solution concentrations,
which induce a smaller amount of lattice strain compared to the dilute defects.
In the presence of a Zr vacancy, all two-atom clusters are more soluble than
individual point defects and as many as four Fe or three Cr atoms could be
accommodated in a single Zr vacancy. The Zr vacancy is critical for the
increased solubility of defect clusters, the implications for irradiation
induced microstructure changes in Zr alloys are discussed.Comment: 15 pages including figure, 9 figures, 2 tables. Submitted for
publication in Acta Mater, Journal of Nuclear Materials (2015
Recommended from our members
The roles of DNA, RNA and histone methylation in ageing and cancer.
Chromatin is a macromolecular complex predominantly comprising DNA, histone proteins and RNA. The methylation of chromatin components is highly conserved as it helps coordinate the regulation of gene expression, DNA repair and DNA replication. Dynamic changes in chromatin methylation are essential for cell-fate determination and development. Consequently, inherited or acquired mutations in the major factors that regulate the methylation of DNA, RNA and/or histones are commonly observed in developmental disorders, ageing and cancer. This has provided the impetus for the clinical development of epigenetic therapies aimed at resetting the methylation imbalance observed in these disorders. In this Review, we discuss the cellular functions of chromatin methylation and focus on how this fundamental biological process is corrupted in cancer. We discuss methylation-based cancer therapies and provide a perspective on the emerging data from early-phase clinical trial therapies that target regulators of DNA and histone methylation. We also highlight promising therapeutic strategies, including monitoring chromatin methylation for diagnostic purposes and combination epigenetic therapy strategies that may improve immune surveillance in cancer and increase the efficacy of conventional and targeted anticancer drugs
Grapevine xylem sap enhances biofilm development by Xylella fastidiosa
Xylella fastidiosa is able to form biofilms within xylem vessels of many economically important crops. Vessel blockage is believed to be a major contributor to disease development caused by this bacterium. This report shows that Vitis riparia xylem sap increases growth rate and induces a characteristic biofilm architecture as compared with biofilms formed in PD2 and PW media. In addition, stable cultures could be maintained, frozen and reestablished in xylem sap. These findings are important as xylem sap provides a natural medium that facilitates the identification of virulence determinants of Pierce's diseas
Online Ramsey theory for a triangle on -free graphs
Given a class of graphs and a fixed graph , the online
Ramsey game for on is a game between two players Builder and
Painter as follows: an unbounded set of vertices is given as an initial state,
and on each turn Builder introduces a new edge with the constraint that the
resulting graph must be in , and Painter colors the new edge either
red or blue. Builder wins the game if Painter is forced to make a monochromatic
copy of at some point in the game. Otherwise, Painter can avoid creating a
monochromatic copy of forever, and we say Painter wins the game.
We initiate the study of characterizing the graphs such that for a given
graph , Painter wins the online Ramsey game for on -free graphs. We
characterize all graphs such that Painter wins the online Ramsey game for
on the class of -free graphs, except when is one particular graph.
We also show that Painter wins the online Ramsey game for on the class of
-minor-free graphs, extending a result by Grytczuk, Ha{\l}uszczak, and
Kierstead.Comment: 20 pages, 10 page
- …