13 research outputs found

    A História da Alimentação: balizas historiográficas

    Full text link
    Os M. pretenderam traçar um quadro da História da Alimentação, não como um novo ramo epistemológico da disciplina, mas como um campo em desenvolvimento de práticas e atividades especializadas, incluindo pesquisa, formação, publicações, associações, encontros acadêmicos, etc. Um breve relato das condições em que tal campo se assentou faz-se preceder de um panorama dos estudos de alimentação e temas correia tos, em geral, segundo cinco abardagens Ia biológica, a econômica, a social, a cultural e a filosófica!, assim como da identificação das contribuições mais relevantes da Antropologia, Arqueologia, Sociologia e Geografia. A fim de comentar a multiforme e volumosa bibliografia histórica, foi ela organizada segundo critérios morfológicos. A seguir, alguns tópicos importantes mereceram tratamento à parte: a fome, o alimento e o domínio religioso, as descobertas européias e a difusão mundial de alimentos, gosto e gastronomia. O artigo se encerra com um rápido balanço crítico da historiografia brasileira sobre o tema

    Enhanced device efficiency and long-term stability via boronic acid-based self-assembled monolayer modification of indium tin oxide in a planar perovskite solar cell

    No full text
    WOS:000444355700085PubMed:30088757Interfacial engineering is essential for the development of highly efficient and stable solar cells through minimizing energetic losses at interfaces. Self-assembled monolayers (SAMs) have been shown as a handle to tune the work function (WF) of indium tin oxide (ITO), improving photovoltaic cell performance and device stability. In this study, we utilize a new class of boronic acid-based fluorine-terminated SAMs to modify ITO surfaces in planar perovskite solar cells. The SAM treatment demonstrates an increase of the WF of ITO, an enhancement of the short-circuit current, and a passivation of trap states at the ITO/[poly(3,4ethylenedioxylenethiophene):poly(styrenesulfonic acid)] interface. Device stability improves upon SAM modification, with efficiency decreasing only 20% after one month. Our work highlights a simple treatment route to achieve hysteresis-free, reproducible, stable, and highly efficient (16%) planar perovskite solar cells.Tubitak 2211-C special areas [1649B031502037]; TubitakTurkiye Bilimsel ve Teknolojik Arastirma Kurumu (TUBITAK) [Tubitak 2214/A-1059B141501315]; Turkey Scholarship Council [2214/A -1059B141501316]; Office of Naval ResearchOffice of Naval Research [N00014-16-1-2612, N000147-14-1-0053]We acknowledge to Haydar Akdag and Dr. Cisem Kirbiyik for their valuable discussion during the study. D.A.K. thank to (Tubitak 2211-C special areas -1649B031502037) and to Tubitak research fellowship (Tubitak 2214/A-1059B141501315). K.K. thank to Turkey Scholarship Council (2214/A -1059B141501316). J.J.K., D.L.G.A., E.K.B., and A.L.B. acknowledge the Office of Naval Research (N00014-16-1-2612 and N000147-14-1-0053)

    Rubrene single crystal solar cells and the effect of crystallinity on interfacial recombination

    No full text
    Single crystal studies provide a better understanding of the basic properties of organic photovoltaic devices. Therefore, in this work, rubrene single crystals with a thickness of 250 nm to 1000 nm were used to produce an inverted bilayer organic solar cell. Subsequently, polycrystalline rubrene (orthorhombic, triclinic) and amorphous bilayer solar cells of the same thickness as single crystals were studied to make comparisons across platforms. To investigate how single crystal, polycrystalline (triclinic-orthorhombic) and amorphous forms alter the charge carrier recombination mechanism at the rubrene/PCBM interface, light intensity measurements were carried out. The light intensity dependency of the J(SC), V-OC and FF parameters in organic solar cells with different forms of rubrene was determined. Monomolecular (Shockley Read Hall) recombination is observed in devices employing amorphous and polycrystalline rubrene in addition to bimolecular recombination, whereas the single crystal device is weakly affected by trap assisted SRH recombination due to reduced trap states at the donor acceptor interface. To date, the proposed work is the only systematic study examining transport and interface recombination mechanisms in organic solar cells produced by different structure forms of rubrene.D. A. K. acknowledges the Turkey research fellowship (TUBITAK 2214/A-1059B141501315). K. K. thanks the Turkey Scholarship Council (2214/A-1059B141501316). B. G acknowledges the 1003 -Primary Subjects R;D Funding Program (218M940) and A. L. B. acknowledges the Office of Naval Research (N0001416-1-2612 and N000147-14-1-0053).Office of Naval Research [N0001416-1-2612, N000147-14-1-0053]; Turkey research fellowship [TUBITAK 2214/A-1059B141501315]; Turkey Scholarship Council [2214/A-1059B141501316]; 1003 -Primary Subjects R;D Funding Program [218M940

    Surface Grafting of Functionalized Poly(thiophene)s Using Thiol–Ene Click Chemistry for Thin Film Stabilization

    No full text
    Regioregular poly­[(3-hexylthiophene)-<i>ran</i>-(3-undecenylthiophene)] (pP3HT) and vinyl terminated poly­(3-hexylthiophene) (xP3HT) were synthesized by the McCullough method and surface grafted to thiol modified silicon dioxide wafers using thiol–ene click chemistry. Utilizing this method, semiconducting, solvent impervious films were easily generated. Thiol–ene click chemistry is convenient for film stabilization in electronics because it does not produce side products that could be inimical to charge transport in the active layer. It was found through grazing incidence wide-angle X-ray scattering (GIWAXS) that there is no change in microstructure between as-spun films and thiol–ene grafted films, while there was a change after the thiol–ene grafted film was exposed to solvent. Organic field-effect transistors (oFETs) were fabricated from grafted films that had been swelled with chloroform, and these devices had mobilities on the order of 10<sup>–6</sup> cm<sup>2</sup> V<sup>–1</sup> s<sup>–1</sup>, which are consistent with poly­(thiophene) monolayer devices

    Controlling Conformations of Diketopyrrolopyrrole-Based Conjugated Polymers: Role of Torsional Angle

    No full text
    Transport of charge carriers through conjugated polymers is strongly influenced by the presence and distribution of structural disorders. In the present work, structural defects caused by the presence of torsional.. angle were investigated in a diketopyrrolopyrrole (DPP)-based conjugated polymer. Two new copolymers of DPP were synthesized with varying torsional angles to trace the role of structural disorder. The optical properties of these copolymers in solution and thin film reveal the strong influence of torsional angle on their photophysical properties. A strong influence was observed on carrier transport properties of polymers in organic field-effect transistors (OFET) device geometry. The polymers based on phenyl DPP with higher torsional angle (PPTDPP-OD-TEG) resulted in high threshold voltage with less charge carrier mobility as compared to the polymer based on thiophene DPP (2DPP-OD-TEG) bearing a lower torsional angle. Carrier mobility and the molecular orientation of the conjugated polymers were correlated on the basis of grazing incidence X-ray scattering measurements showing the strong role of torsional angle introduced in the form of structural disorder. The results presented in this Article provide a deep insight into the sensitivity of structural disorder and its impact on the device performance of DPP-based conjugated polymers

    Breaking the Bimolecular Crystal: The Effect of Side-Chain Length on Oligothiophene/Fullerene Intercalation

    No full text
    Polymer/fullerene bimolecular crystal formation has been investigated using a variety of conjugated polymers and fullerenes to understand the design rules that influence donor–acceptor interaction. Modifications of the polymer by varying the substitution side-chain position, density, and branching have demonstrated the importance of the “pocket” dimensions (free volume between side chains where the fullerene resides) for controlling intercalation. Yet the effect of pocket height has not been systematically explored because of the solubility limitations in polymers. In this report, we present an experimental investigation into the effect of the pocket height by synthesizing poly­[2,5-bis­(3-<i>alkyl</i>thiophen-2-yl)­thieno­[3,2-<i>b</i>]­thiophene] dimers with varied side chain lengths and track the morphological changes of the dimer/fullerene blends using grazing-incidence X-ray scattering, thermal measurements, and photoluminescence quenching. We identify two regimes: (1) oligomers with side chains greater than or equal to heptyl (C7) form bimolecular crystals and (2) oligomers with less than or equal to hexyl (C6) form amorphous blends. This work provides the first observation of an order-to-disorder transition mediated by side-chain length in donor-fullerene intercalated blends

    Controlling Conformations of Diketopyrrolopyrrole-Based Conjugated Polymers: Role of Torsional Angle

    No full text
    Transport of charge carriers through conjugated polymers is strongly influenced by the presence and distribution of structural disorders. In the present work, structural defects caused by the presence of torsional angle were investigated in a diketopyrrolopyrrole (<b>DPP</b>)-based conjugated polymer. Two new copolymers of <b>DPP</b> were synthesized with varying torsional angles to trace the role of structural disorder. The optical properties of these copolymers in solution and thin film reveal the strong influence of torsional angle on their photophysical properties. A strong influence was observed on carrier transport properties of polymers in organic field-effect transistors (OFET) device geometry. The polymers based on phenyl DPP with higher torsional angle (<b>PPTDPP</b>-OD-TEG) resulted in high threshold voltage with less charge carrier mobility as compared to the polymer based on thiophene DPP (<b>2DPP</b>-OD-TEG) bearing a lower torsional angle. Carrier mobility and the molecular orientation of the conjugated polymers were correlated on the basis of grazing incidence X-ray scattering measurements showing the strong role of torsional angle introduced in the form of structural disorder. The results presented in this Article provide a deep insight into the sensitivity of structural disorder and its impact on the device performance of DPP-based conjugated polymers
    corecore