25 research outputs found

    ZEB2 regulates endocrine therapy sensitivity and metastasis in luminal a breast cancer cells through a non-canonical mechanism

    Get PDF
    PURPOSE: The transcription factors ZEB1 and ZEB2 mediate epithelial-to-mesenchymal transition (EMT) and metastatic progression in numerous malignancies including breast cancer. ZEB1 and ZEB2 drive EMT through transcriptional repression of cell-cell junction proteins and members of the tumor suppressive miR200 family. However, in estrogen receptor positive (ER +) breast cancer, the role of ZEB2 as an independent driver of metastasis has not been fully investigated. METHODS: In the current study, we induced exogenous expression of ZEB2 in ER + MCF-7 and ZR-75-1 breast cancer cell lines and examined EMT gene expression and metastasis using dose-response qRT-PCR, transwell migration assays, proliferation assays with immunofluorescence of Ki-67 staining. We used RNA sequencing to identify pathways and genes affected by ZEB2 overexpression. Finally, we treated ZEB2-overexpressing cells with 17β-estradiol (E2) or ICI 182,780 to evaluate how ZEB2 affects estrogen response. RESULTS: Contrary to expectation, we found that ZEB2 did not increase canonical epithelial nor decrease mesenchymal gene expressions. Furthermore, ZEB2 overexpression did not promote a mesenchymal cell morphology. However, ZEB1 and ZEB2 protein expression induced significant migration of MCF-7 and ZR-75-1 breast cancer cells in vitro and MCF-7 xenograft metastasis in vivo. Transcriptomic (RNA sequencing) pathway analysis revealed alterations in estrogen signaling regulators and pathways, suggesting a role for ZEB2 in endocrine sensitivity in luminal A breast cancer. Expression of ZEB2 was negatively correlated with estrogen receptor complex genes in luminal A patient tumors. Furthermore, treatment with 17β-estradiol (E2) or the estrogen receptor antagonist ICI 182,780 had no effect on growth of ZEB2-overexpressing cells. CONCLUSION: ZEB2 is a multi-functional regulator of drug sensitivity, cell migration, and metastasis in ER + breast cancer and functions through non-canonical mechanisms

    NEK5 activity regulates the mesenchymal and migratory phenotype in breast cancer cells

    Get PDF
    Purpose Breast cancer remains a prominent global disease affecting women worldwide despite the emergence of novel therapeutic regimens. Metastasis is responsible for most cancer-related deaths, and acquisition of a mesenchymal and migratory cancer cell phenotypes contributes to this devastating disease. The utilization of kinase targets in drug discovery have revolutionized the field of cancer research but despite impressive advancements in kinase-targeting drugs, a large portion of the human kinome remains understudied in cancer. NEK5, a member of the Never-in-mitosis kinase family, is an example of such an understudied kinase. Here, we characterized the function of NEK5 in breast cancer. Methods Stably overexpressing NEK5 cell lines (MCF7) and shRNA knockdown cell lines (MDA-MB-231, TU-BcX-4IC) were utilized. Cell morphology changes were evaluated using immunofluorescence and quantification of cytoskeletal components. Cell proliferation was assessed by Ki-67 staining and transwell migration assays tested cell migration capabilities. In vivo experiments with murine models were necessary to demonstrate NEK5 function in breast cancer tumor growth and metastasis. Results NEK5 activation altered breast cancer cell morphology and promoted cell migration independent of effects on cell proliferation. NEK5 overexpression or knockdown does not alter tumor growth kinetics but promotes or suppresses metastatic potential in a cell type-specific manner, respectively. Conclusion While NEK5 activity modulated cytoskeletal changes and cell motility, NEK5 activity affected cell seeding capabilities but not metastatic colonization or proliferation in vivo. Here we characterized NEK5 function in breast cancer systems and we implicate NEK5 in regulating specific steps of metastatic progression

    A novel screening approach comparing kinase activity of small molecule inhibitors with similar molecular structures and distinct biologic effects in triple-negative breast cancer to identify targetable signaling pathways

    No full text
    Breast cancer affects women globally; the majority of breast cancer-related mortalities are due to metastasis. Acquisition of a mesenchymal phenotype has been implicated in the progression of breast cancer cells to an invasive, metastatic state. Triple-negative breast cancer (TNBC) subtypes have high rates of metastases, recurrence, and have poorer prognoses compared to other breast cancer types, partially due to lack of commonly targeted receptors. Kinases have diverse and pivotal functions in metastasis in TNBC, and discovery of new kinase targets for TNBC is warranted. We previously used a screening approach to identify intermediate-synthesis nonpotent, nonselective small-molecule inhibitors from the Published Kinase Inhibitor Set that reversed the mesenchymal phenotype in TNBC cells. Two of these inhibitors (GSK346294A and GSK448459A) are structurally similar, but have unique kinase activity profiles and exhibited differential biologic effects on TNBC cells, specifically on epithelial-to-mesenchymal transition (EMT). Here, we further interrogate these effects and compare activity of these inhibitors on transwell migration, gene (qRT-PCR) and protein (western blot) expressions, and cancer stem cell-like behavior. We incorporated translational patient-derived xenograft models in these studies, and we focused on the lead inhibitor hit, GSK346294A, to demonstrate the utility of our comparative analysis as a screening modality to identify novel kinase targets and signaling pathways to pursue in TNBC. This study introduces a new method for discovering novel kinase targets that reverse the EMT phenotype; this screening approach can be applied to all cancer types and is not limited to breast cancer

    Liver Kinase B1 Regulates Remodeling of the Tumor Microenvironment in Triple-Negative Breast Cancer

    No full text
    Liver kinase B1 (LKB1) is a potent tumor suppressor that regulates cellular energy balance and metabolism as an upstream kinase of the AMP-activated protein kinase (AMPK) pathway. LKB1 regulates cancer cell invasion and metastasis in multiple cancer types, including breast cancer. In this study, we evaluated LKB1\u27s role as a regulator of the tumor microenvironment (TME). This was achieved by seeding the MDA-MB-231-LKB1 overexpressing cell line onto adipose and tumor scaffolds, followed by the evaluation of tumor matrix-induced tumorigenesis and metastasis. Results demonstrated that the presence of tumor matrix enhanced tumorigenesis in both MDA-MB-231 and MDA-MB-231-LKB1 cell lines. Metastasis was increased in both MDA-MB-231 and -LKB1 cells seeded on the tumor scaffold. Endpoint analysis of tumor and adipose scaffolds revealed LKB1-mediated tumor microenvironment remodeling as evident through altered matrix protein production. The proteomic analysis determined that LKB1 overexpression preferentially decreased all major and minor fibril collagens (collagens I, III, V, and XI). In addition, proteins observed to be absent in tumor scaffolds in the LKB1 overexpressing cell line included those associated with the adipose matrix (COL6A2) and regulators of adipogenesis (IL17RB and IGFBP4), suggesting a role for LKB1 in tumor-mediated adipogenesis. Histological analysis of MDA-MB-231-LKB1-seeded tumors demonstrated decreased total fibril collagen and indicated decreased stromal cell presence. In accordance with this, condition medium studies demonstrated that the MDA-MB-231-LKB1 secretome inhibited adipogenesis of adipose-derived stem cells. Taken together, these data demonstrate a role for LKB1 in regulating the tumor microenvironment through fibril matrix remodeling and suppression of adipogenesis

    Argonaute 2 Expression Correlates with a Luminal B Breast Cancer Subtype and Induces Estrogen Receptor Alpha Isoform Variation

    Get PDF
    Estrogen receptor alpha (ERα) signaling pathways are frequently disrupted in breast cancer and contribute to disease progression. ERα signaling is multifaceted and many ERα regulators have been identified including transcription factors and growth factor pathways. More recently, microRNAs (miRNAs) are shown to deregulate ERα activity in breast carcinomas, with alterations in both ERα and miRNA expression correlating to cancer progression. In this study, we show that a high expression of Argonaute 2 (AGO2), a translation regulatory protein and mediator of miRNA function, correlates with the luminal B breast cancer subtype. We further demonstrate that a high expression of AGO2 in ERα+ tumors correlates with a poor clinical outcome. MCF-7 breast cancer cells overexpressing AGO2 (MCF7-AGO2) altered ERα downstream signaling and selective ERα variant expression. Enhanced ERα-36, a 36 kDa ERα isoform, protein and gene expression was observed in vitro. Through quantitative polymerase chain reaction (qPCR), we demonstrate decreased basal expression of the full-length ERα and progesterone receptor genes, in addition to loss of estrogen stimulated gene expression in vitro. Despite the loss, MCF-7-AGO2 cells demonstrated increased estrogen stimulated tumorigenesis in vivo. Together with our clinical findings on AGO2 expression and the luminal B subtype, we suggest that AGO2 is a regulator of altered ERα signaling in breast tumors

    Constitutive activation of MEK5 promotes a mesenchymal and migratory cell phenotype in triple negative breast cancer

    Get PDF
    Triple negative breast cancer (TNBC) is an aggressive subtype of breast cancer with limited targeted therapeutic options. A defining feature of TNBC is the propensity to metastasize and acquire resistance to cytotoxic agents. Mitogen activated protein kinase (MAPK) and extracellular regulated kinase (ERK) signaling pathways have integral roles in cancer development and progression. While MEK5/ERK5 signaling drives mesenchymal and migratory cell phenotypes in breast cancer, the specific mechanisms underlying these actions remain under-characterized. To elucidate the mechanisms through which MEK5 regulates the mesenchymal and migratory phenotype, we generated stably transfected constitutively active MEK5 (MEK5-ca) TNBC cells. Downstream signaling pathways and candidate targets of MEK5-ca cells were based on RNA sequencing and confirmed using qPCR and Western blot analyses. MEK5 activation drove a mesenchymal cell phenotype independent of cell proliferation effects. Transwell migration assays demonstrated MEK5 activation significantly increased breast cancer cell migration. In this study, we provide supporting evidence that MEK5 functions through FRA-1 to regulate the mesenchymal and migratory phenotype in TNBC

    Novel application of the published kinase inhibitor set to identify therapeutic targets and pathways in triple negative breast cancer subtypes

    Get PDF
    <div><p>Triple negative breast cancers (TNBCs) have high recurrence and metastasis rates. Acquisition of a mesenchymal morphology and phenotype in addition to driving migration is a consequential process that promotes metastasis. Although some kinases are known to regulate a mesenchymal phenotype, the role for a substantial portion of the human kinome remains uncharacterized. Here we evaluated the Published Kinase Inhibitor Set (PKIS) and screened a panel of TNBC cell lines to evaluate the compounds’ effects on a mesenchymal phenotype. Our screen identified 36 hits representative of twelve kinase inhibitor chemotypes based on reversal of the mesenchymal cell morphology, which was then prioritized to twelve compounds based on gene expression and migratory behavior analyses. We selected the most active compound and confirmed mesenchymal reversal on transcript and protein levels with qRT-PCR and Western Blot. Finally, we utilized a kinase array to identify candidate kinases responsible for the EMT reversal. This investigation shows the novel application to identify previously unrecognized kinase pathways and targets in acquisition of a mesenchymal TNBC phenotype that warrant further investigation. Future studies will examine specific roles of the kinases in mechanisms responsible for acquisition of the mesenchymal and/or migratory phenotype.</p></div

    Drug resistance profiling of a new triple negative breast cancer patient-derived xenograft model

    No full text
    Abstract Background Triple-negative breast cancer (TNBC) represents an aggressive subtype with limited therapeutic options. Experimental preclinical models that recapitulate their tumors of origin can accelerate target identification, thereby potentially improving therapeutic efficacy. Patient-derived xenografts (PDXs), due to their genomic and transcriptomic fidelity to the tumors from which they are derived, are poised to improve the preclinical testing of drug-target combinations in translational models. Despite the previous development of breast and TNBC PDX models, those derived from patients with demonstrated health-disparities are lacking. Methods We use an aggressive TNBC PDX model propagated in SCID/Beige mice that was established from an African-American woman, TU-BcX-2 K1, and assess its metastatic potential and drug sensitivities under distinct in vitro conditions. Cellular derivatives of the primary tumor or the PDX were grown in 2D culture conditions or grown in mammospheres 3D culture. Flow cytometry and fluorescence staining was used to quantify cancer stem cell-like populations. qRT-PCR was used to describe the mesenchymal gene signature of the tumor. The sensitivity of TU-BcX-2 K1-derived cells to anti-neoplastic oncology drugs was compared in adherent cells and mammospheres. Drug response was evaluated using a live/dead staining kit and crystal violet staining. Results TU-BcX-2 K1 has a low propensity for metastasis, reflects a mesenchymal state, and contains a large burden of cancer stem cells. We show that TU-BcX-2 K1 cells have differential responses to cytotoxic and targeted therapies in 2D compared to 3D culture conditions insofar as several drug classes conferred sensitivity in 2D but not in 3D culture, or cells grown as mammospheres. Conclusions Here we introduce a new TNBC PDX model and demonstrate the differences in evaluating drug sensitivity in adherent cells compared to mammosphere, or suspension, culture

    Immunofluorescence staining to observe morphological changes after treatment with GSK inhibitors.

    No full text
    <p>(A) Apotome-based microscopic imaging of triple negative MDA-MB-231 cells treated with DMSO (control; panel <i>a</i>), GSK198271A, GSK350559A, GSK494610A, GSK346294A, GSK448459A, GSK237700A, GSK809897X, and GSK1010829B. The samples were pretreated for 72 hours before staining and experiment was performed in triplicate. A phalloidin stain was used to highlight actin filaments (red), DAPI stained for the nucleus (blue). (B) Quantitative morphological analysis of MDA-MB-231 cells after treatment with select GSK compounds. A minimum of 45 cells were quantified per treatment group. Measurements of cellular morphology after immunofluorescence staining and Apotome microscopy imaging are reported. Area is defined as the length of the cell x the width; Circularity = 4(π) x (area/perimeter<sup>2</sup>). Aspect Ratio = length/width; Nuclear Area Fraction = (Area of Nucleus/Area of Cell). Greater area, cell circularity, aspect ratio and nuclear area fraction are associated with a mesenchymal phenotype due to cytoskeletal rearrangement [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0177802#pone.0177802.ref031" target="_blank">31</a>]. For quantification experiments, N ≥ 45, error bars represent SEM and significantly different * p < 0.05, *** p < 0.001.</p

    Analysis of structurally similar PLK inhibitors and anti-malarial inhibitors.

    No full text
    <p>(A) Three small molecule PLK inhibitors (GSK346294A, GSK448459A and GSK237700A) are similar in structure and have similar effects on reversal of a mesenchymal phenotype as indicated by an increase in CDH1 and suppression of cellular migration. (B) Two structurally similar anti-malarial inhibitors (GSK198271A, GSK350559A) identified in the initial screen alter cellular morphology, but only GSK198271A increases CDH1 expression. These data indicate there is a potential off-target effect that drives the observed effects of the inhibitors. Pharmacophores are outlined in blue. Compounds selected for further in-depth analyses altered the mesenchymal phenotype by affecting gene expressions or suppression of cellular migration.</p
    corecore