122 research outputs found

    The impact of current CH4 and N2O atmospheric loss process uncertainties on calculated ozone abundances and trends

    Get PDF
    The atmospheric loss processes of N2O and CH4, their estimated uncertainties, lifetimes, and impacts on ozone abundance and long-term trends are examined using atmospheric model calculations and updated kinetic and photochemical parameters and uncertainty factors from SPARC [2013]. The uncertainty ranges in calculated N2O and CH4 global lifetimes computed using the SPARC estimated uncertainties are reduced by nearly a factor of two compared with uncertainties from Sander et al. [2011]. Uncertainties in CH4 loss due to reaction with OH and O(1D) have relatively small impacts on present day global total ozone (±0.2-0.3%). Uncertainty in the Cl + CH4 reaction affects the amount of chlorine in radical vs. reservoir forms and has a modest impact on present day SH polar ozone (~±6%), and on the rate of past ozone decline and future recovery. Uncertainty in the total rate coefficient for the O(1D) + N2O reaction results in a substantial range in present day stratospheric odd nitrogen (±20-25%) and global total ozone (±1.5-2.5%). Uncertainty in the O(1D) + N2O reaction branching ratio for the O2 + N2 and 2*NO product channels results in moderate impacts on odd nitrogen (±10%) and global ozone (±1%),with uncertainty in N2O photolysis resulting in relatively small impacts (±5% in odd nitrogen, ±0.5% in global ozone). Uncertainties in the O(1D) + N2O reaction and its branching ratio also affect the rate of past global total ozone decline and future recovery, with a range in future ozone projections of ±1-1.5% by 2100, relative to present day

    Pollutant dispersion in a developing valley cold-air pool

    Get PDF
    Pollutants are trapped and accumulate within cold-air pools, thereby affecting air quality. A numerical model is used to quantify the role of cold-air-pooling processes in the dispersion of air pollution in a developing cold-air pool within an alpine valley under decoupled stable conditions. Results indicate that the negatively buoyant downslope flows transport and mix pollutants into the valley to depths that depend on the temperature deficit of the flow and the ambient temperature structure inside the valley. Along the slopes, pollutants are generally entrained above the cold-air pool and detrained within the cold-air pool, largely above the ground-based inversion layer. The ability of the cold-air pool to dilute pollutants is quantified. The analysis shows that the downslope flows fill the valley with air from above, which is then largely trapped within the cold-air pool, and that dilution depends on where the pollutants are emitted with respect to the positions of the top of the ground-based inversion layer and cold-air pool, and on the slope wind speeds. Over the lower part of the slopes, the cold-air-pool-averaged concentrations are proportional to the slope wind speeds where the pollutants are emitted, and diminish as the cold-air pool deepens. Pollutants emitted within the ground-based inversion layer are largely trapped there. Pollutants emitted farther up the slopes detrain within the cold-air pool above the ground-based inversion layer, although some fraction, increasing with distance from the top of the slopes, penetrates into the ground-based inversion layer.Peer reviewe

    ruvA Mutants that resolve Holliday junctions but do not reverse replication forks

    Get PDF
    RuvAB and RuvABC complexes catalyze branch migration and resolution of Holliday junctions (HJs) respectively. In addition to their action in the last steps of homologous recombination, they process HJs made by replication fork reversal, a reaction which occurs at inactivated replication forks by the annealing of blocked leading and lagging strand ends. RuvAB was recently proposed to bind replication forks and directly catalyze their conversion into HJs. We report here the isolation and characterization of two separation-of-function ruvA mutants that resolve HJs, based on their capacity to promote conjugational recombination and recombinational repair of UV and mitomycin C lesions, but have lost the capacity to reverse forks. In vivo and in vitro evidence indicate that the ruvA mutations affect DNA binding and the stimulation of RuvB helicase activity. This work shows that RuvA's actions at forks and at HJs can be genetically separated, and that RuvA mutants compromised for fork reversal remain fully capable of homologous recombination

    In Vivo Evaluation of Retinal Neurodegeneration in Patients with Multiple Sclerosis

    Get PDF
    To evaluate macular morphology in the eyes of patients with multiple sclerosis (MS) with or without optic neuritis (ON) in previous history.Optical coherence tomography (OCT) examination was performed in thirty-nine patients with MS and in thirty-three healthy subjects. The raw macular OCT data were processed using OCTRIMA software. The circumpapillary retinal nerve fiber layer (RNFL) thickness and the weighted mean thickness of the total retina and 6 intraretinal layers were obtained for each eye. The eyes of MS patients were divided into a group of 39 ON-affected eyes, and into a group of 34 eyes with no history of ON for the statistical analyses. Receiver operating characteristic (ROC) curves were constructed to determine which parameter can discriminate best between the non-affected group and controls.The circumpapillary RNFL thickness was significantly decreased in the non-affected eyes compared to controls group only in the temporal quadrant (p = 0.001) while it was decreased in the affected eyes of the MS patients in all quadrants compared to the non-affected eyes (p<0.05 in each comparison). The thickness of the total retina, RNFL, ganglion cell layer and inner plexiform layer complex (GCL+IPL) and ganglion cell complex (GCC, comprising the RNFL and GCL+IPL) in the macula was significantly decreased in the non-affected eyes compared to controls (p<0.05 for each comparison) and in the ON-affected eyes compared to the non-affected eyes (p<0.001 for each comparison). The largest area under the ROC curve (0.892) was obtained for the weighted mean thickness of the GCC. The EDSS score showed the strongest correlation with the GCL+IPL and GCC thickness (p = 0.007, r = 0.43 for both variables).Thinning of the inner retinal layers is present in eyes of MS patients regardless of previous ON. Macular OCT image segmentation might provide a better insight into the pathology of neuronal loss and could therefore play an important role in the diagnosis and follow-up of patients with MS

    Retinal Axonal Loss Begins Early in the Course of Multiple Sclerosis and Is Similar between Progressive Phenotypes

    Get PDF
    To determine whether retinal axonal loss is detectable in patients with a clinically isolated syndrome (CIS), a first clinical demyelinating attack suggestive of multiple sclerosis (MS), and examine patterns of retinal axonal loss across MS disease subtypes.Spectral-domain Optical Coherence Tomography was performed in 541 patients with MS, including 45 with high-risk CIS, 403 with relapsing-remitting (RR)MS, 60 with secondary-progressive (SP)MS and 33 with primary-progressive (PP)MS, and 53 unaffected controls. Differences in retinal nerve fiber layer (RNFL) thickness and macular volume were analyzed using multiple linear regression and associations with age and disease duration were examined in a cross-sectional analysis. In eyes without a clinical history of optic neuritis (designated as "eyes without optic neuritis"), the total and temporal peripapillary RNFL was thinner in CIS patients compared to controls (temporal RNFL by -5.4 µm [95% CI -0.9 to--9.9 µm, p = 0.02] adjusting for age and sex). The total (p = 0.01) and temporal (p = 0.03) RNFL was also thinner in CIS patients with clinical disease for less than 1 year compared to controls. In eyes without optic neuritis, total and temporal RNFL thickness was nearly identical between primary and secondary progressive MS, but total macular volume was slightly lower in the primary progressive group (p<0.05).Retinal axonal loss is increasingly prominent in more advanced stages of disease--progressive MS>RRMS>CIS--with proportionally greater thinning in eyes previously affected by clinically evident optic neuritis. Retinal axonal loss begins early in the course of MS. In the absence of clinically evident optic neuritis, RNFL thinning is nearly identical between progressive MS subtypes

    Stationary cocycles and Busemann functions for the corner growth model

    Get PDF
    We study the directed last-passage percolation model on the planar square lattice with nearest-neighbor steps and general i.i.d. weights on the vertices, out- side of the class of exactly solvable models. Stationary cocycles are constructed for this percolation model from queueing fixed points. These cocycles serve as bound- ary conditions for stationary last-passage percolation, solve variational formulas that characterize limit shapes, and yield existence of Busemann functions in directions where the shape has some regularity. In a sequel to this paper the cocycles are used to prove results about semi-infinite geodesics and the competition interface

    Association of Retinal and Macular Damage with Brain Atrophy in Multiple Sclerosis

    Get PDF
    Neuroaxonal degeneration in the central nervous system contributes substantially to the long term disability in multiple sclerosis (MS) patients. However, in vivo determination and monitoring of neurodegeneration remain difficult. As the widely used MRI-based approaches, including the brain parenchymal fraction (BPF) have some limitations, complementary in vivo measures for neurodegeneration are necessary. Optical coherence tomography (OCT) is a potent tool for the detection of MS-related retinal neurodegeneration. However, crucial aspects including the association between OCT- and MRI-based atrophy measures or the impact of MS-related parameters on OCT parameters are still unclear. In this large prospective cross-sectional study on 104 relapsing remitting multiple sclerosis (RRMS) patients we evaluated the associations of retinal nerve fiber layer thickness (RNFLT) and total macular volume (TMV) with BPF and addressed the impact of disease-determining parameters on RNFLT, TMV or BPF. BPF, normalized for subject head size, was estimated with SIENAX. Relations were analyzed primarily by Generalized Estimating Equation (GEE) models considering within-patient inter-eye relations. We found that both RNFLT (p = 0.019, GEE) and TMV (p = 0.004, GEE) associate with BPF. RNFLT was furthermore linked to the disease duration (p<0.001, GEE) but neither to disease severity nor patients' age. Contrarily, BPF was rather associated with severity (p<0.001, GEE) than disease duration and was confounded by age (p<0.001, GEE). TMV was not associated with any of these parameters. Thus, we conclude that in RRMS patients with relatively short disease duration and rather mild disability RNFLT and TMV reflect brain atrophy and are thus promising parameters to evaluate neurodegeneration in MS. Furthermore, our data suggest that RNFLT and BPF reflect different aspects of MS. Whereas BPF best reflects disease severity, RNFLT might be the better parameter for monitoring axonal damage longitudinally. Longitudinal studies are necessary for validation of data and to further clarify the relevance of TMV

    Pseudomonas viridiflava, a Multi Host Plant Pathogen with Significant Genetic Variation at the Molecular Level

    Get PDF
    The pectinolytic species Pseudomonas viridiflava has a wide host range among plants, causing foliar and stem necrotic lesions and basal stem and root rots. However, little is known about the molecular evolution of this species. In this study we investigated the intraspecies genetic variation of P. viridiflava amongst local (Cretan), as well as international isolates of the pathogen. The genetic and phenotypic variability were investigated by molecular fingerprinting (rep-PCR) and partial sequencing of three housekeeping genes (gyrB, rpoD and rpoB), and by biochemical and pathogenicity profiling. The biochemical tests and pathogenicity profiling did not reveal any variability among the isolates studied. However, the molecular fingerprinting patterns and housekeeping gene sequences clearly differentiated them. In a broader phylogenetic comparison of housekeeping gene sequences deposited in GenBank, significant genetic variability at the molecular level was found between isolates of P. viridiflava originated from different host species as well as among isolates from the same host. Our results provide a basis for more comprehensive understanding of the biology, sources and shifts in genetic diversity and evolution of P. viridiflava populations and should support the development of molecular identification tools and epidemiological studies in diseases caused by this species

    Investigating Tissue Optical Properties and Texture Descriptors of the Retina in Patients with Multiple Sclerosis

    Get PDF
    PURPOSE: To assess the differences in texture descriptors and optical properties of retinal tissue layers in patients with multiple sclerosis (MS) and to evaluate their usefulness in the detection of neurodegenerative changes using optical coherence tomography (OCT) image segmentation. PATIENTS AND METHODS: 38 patients with MS were examined using Stratus OCT. The raw macular OCT data were exported and processed using OCTRIMA software. The enrolled eyes were divided into two groups, based on the presence of optic neuritis (ON) in the history (MSON+ group, n = 36 and MSON- group, n = 31). Data of 29 eyes of 24 healthy subjects (H) were used as controls. A total of seven intraretinal layers were segmented and thickness as well as optical parameters such as contrast, fractal dimension, layer index and total reflectance were measured. Mixed-model ANOVA analysis was used for statistical comparisons. RESULTS: Significant thinning of the retinal nerve fiber layer (RNFL), ganglion cell/inner plexiform layer complex (GCL+IPL) and ganglion cell complex (GCC, RNFL+GCL+IPL) was observed between study groups in all comparisons. Significant difference was found in contrast in the RNFL, GCL+IPL, GCC, inner nuclear layer (INL) and outer plexiform layer when comparing MSON+ to the other groups. Higher fractal dimension values were observed in GCL+IPL and INL layers when comparing H vs. MSON+ groups. A significant difference was found in layer index in the RNFL, GCL+IPL and GCC layers in all comparisons. A significant difference was observed in total reflectance in the RNFL, GCL+IPL and GCC layers between the three examination groups. CONCLUSION: Texture and optical properties of the retinal tissue undergo pronounced changes in MS even without optic neuritis. Our results may help to further improve the diagnostic efficacy of OCT in MS and neurodegeneration

    A functional variant in the Stearoyl-CoA desaturase gene promoter enhances fatty acid desaturation in pork

    Get PDF
    There is growing public concern about reducing saturated fat intake. Stearoyl-CoA desaturase (SCD) is the lipogenic enzyme responsible for the biosynthesis of oleic acid (18:1) by desaturating stearic acid (18:0). Here we describe a total of 18 mutations in the promoter and 3′ non-coding region of the pig SCD gene and provide evidence that allele T at AY487830:g.2228T>C in the promoter region enhances fat desaturation (the ratio 18:1/18:0 in muscle increases from 3.78 to 4.43 in opposite homozygotes) without affecting fat content (18:0+18:1, intramuscular fat content, and backfat thickness). No mutations that could affect the functionality of the protein were found in the coding region. First, we proved in a purebred Duroc line that the C-T-A haplotype of the 3 single nucleotide polymorphisms (SNPs) (g.2108C>T; g.2228T>C; g.2281A>G) of the promoter region was additively associated to enhanced 18:1/18:0 both in muscle and subcutaneous fat, but not in liver. We show that this association was consistent over a 10-year period of overlapping generations and, in line with these results, that the C-T-A haplotype displayed greater SCD mRNA expression in muscle. The effect of this haplotype was validated both internally, by comparing opposite homozygote siblings, and externally, by using experimental Duroc-based crossbreds. Second, the g.2281A>G and the g.2108C>T SNPs were excluded as causative mutations using new and previously published data, restricting the causality to g.2228T>C SNP, the last source of genetic variation within the haplotype. This mutation is positioned in the core sequence of several putative transcription factor binding sites, so that there are several plausible mechanisms by which allele T enhances 18:1/18:0 and, consequently, the proportion of monounsaturated to saturated fat.This research was supported by grants from the Spanish Ministry of Science and Innovation (AGL2009-09779 and AGL2012-33529). RRF is recipient of a PhD scholarship from the Spanish Ministry of Science and Innovation (BES-2010-034607). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of manuscript
    • …
    corecore