11 research outputs found

    Early Detection of SARS-CoV-2 Omicron BA.4 and BA.5 in German Wastewater

    Get PDF
    Wastewater-based SARS-CoV-2 epidemiology (WBE) has been established as an important tool to support individual testing strategies. The Omicron sub-variants BA.4/BA.5 have spread globally, displacing the preceding variants. Due to the severe transmissibility and immune escape potential of BA.4/BA.5, early monitoring was required to assess and implement countermeasures in time. In this study, we monitored the prevalence of SARS-CoV-2 BA.4/BA.5 at six municipal wastewater treatment plants (WWTPs) in the Federal State of North Rhine-Westphalia (NRW, Germany) in May and June 2022. Initially, L452R-specific primers/probes originally designed for SARS-CoV-2 Delta detection were validated using inactivated authentic viruses and evaluated for their suitability for detecting BA.4/BA.5. Subsequently, the assay was used for RT-qPCR analysis of RNA purified from wastewater obtained twice a week at six WWTPs. The occurrence of L452R carrying RNA was detected in early May 2022, and the presence of BA.4/BA.5 was confirmed by variant-specific single nucleotide polymorphism PCR (SNP-PCR) targeting E484A/F486V and NGS sequencing. Finally, the mutant fractions were quantitatively monitored by digital PCR, confirming BA.4/BA.5 as the majority variant by 5 June 2022. In conclusion, the successive workflow using RT-qPCR, variant-specific SNP-PCR, and RT-dPCR demonstrates the strength of WBE as a versatile tool to rapidly monitor variants spreading independently of individual test capacities

    Leistung aktueller Belebungsanlagen –Bemessung vs.Betriebsergebnisse bei Emschergenossenschaft und Lippeverband

    No full text
    Aufgrund von Immisonsbetrachtungen ist die Tendenz einer Verschärfung der Überwachungswerte von Kläranlagenabläufen, insbesondere in Hinblick auf die Parameter Ammonium und Phosphor zu beobachten. Der Anwendungsbereich des statischen Bemessungsansatzes zur Stickstoffelimination des Arbeitsblattes DWA-A131 trägt dem nur bedingt Rechnung. Anhand von statistischen Auswertungen zahlreicher Kläranlagenabläufe wird gezeigt, dass NH4-NBetriebsmittelwerte von unter 0,2 mg/l ganzjährig erzielt werden können. Die erforderlichen Randbedingungen und betrieblichen Zielkonflikte werden aufgezeigt.1291461

    Early detection of SARS-CoV-2 Omicron BA.4/5 in German wastewater

    No full text
    Wastewater-based SARS-CoV-2 epidemiology (WBE) has been established as an important tool to support individual testing strategies. Omicron sub-variants BA.4/5 have spread globally displacing the predeceasing variants. Due to the severe transmissibility and immune escape potential of BA.4/5, early monitoring was required to asses and implement countermeasures in time. In this study, we monitored the prevalence of SARS-CoV-2 BA.4/5 at six municipal wastewater treatment plants (WWTPs) in the Federal State of North-Rhine-Westphalia (NRW, Germany) in May and June 2022. Initially, L452R-specific primers/probes originally designed for SARS-CoV-2 Delta detection were validated using inactivated authentic viruses and evaluated for their suitability to detect BA.4/5. Subsequently, the assay was used for RT-qPCR analysis of RNA purified from wastewater obtained twice a week at six WWTPs. The occurrence of L452R carrying RNA was detected in early May 2022 and the presence of BA.4/5 was confirmed by variant-specific single nucleotide polymorphism PCR (SNP-PCR) targeting E484A/F486V. Finally, the mutant fractions were quantitatively monitored by digital PCR confirming BA.4/5 as the majority variant by 5th June 2022. In conclusions, the successive workflow using RT-qPCR, variant-specific SNP-PCR, and RT-dPCR demonstrates the strength of WBE as a versatile tool to rapidly monitor variant spreading independent of individual test capacities

    Wastewater surveillance allows early detection of SARS-CoV-2 omicron in North Rhine-Westphalia, Germany

    No full text
    Wastewater-based epidemiology (WBE) has demonstrated its importance to support SARS-CoV-2 epidemiology complementing individual testing strategies. Due to their immune-evasive potential and the resulting significance for public health, close monitoring of SARS-CoV-2 variants of concern (VoC) is required to evaluate the regulation of early local countermeasures. In this study, we demonstrate a rapid workflow for wastewater-based early detection and monitoring of the newly emerging SARS-CoV-2 VoCs Omicron in the end of 2021 at the municipal wastewater treatment plant (WWTP) Emschermuendung (KLEM) in the Federal State of North-Rhine-Westphalia (NRW, Germany). Initially, available primers detecting Omicron-related mutations were rapidly validated in a central laboratory. Subsequently, RT-qPCR analysis of purified SARS-CoV-2 RNA was performed in a decentral PCR laboratory in close proximity to KLEM. This decentralized approach enabled the early detection of K417N present in Omicron in samples collected on 8th December 2021 and the detection of further mutations (N501Y, Δ69/70) in subsequent biweekly sampling campaigns. The presence of Omicron in wastewater was confirmed by next generation sequencing (NGS) in a central laboratory with samples obtained on 14th December 2021. Moreover, the relative increase of the mutant fraction of Omicron was quantitatively monitored over time by dPCR in a central PCR laboratory starting on 12th December 2021 confirming Omicron as the dominant variant by the end of 2021. In conclusions, WBE plays a crucial role in surveillance of SARS-CoV-2 variants and is suitable as an early warning system to identify variant emergence. In particular, the successive workflow using RT-qPCR, RT-dPCR and NGS demonstrates the strength of WBE as a versatile tool to monitor variant spreading
    corecore