2,805 research outputs found

    Ionization potentials in the limit of large atomic number

    Full text link
    By extrapolating the energies of non-relativistic atoms and their ions with up to 3000 electrons within Kohn-Sham density functional theory, we find that the ionization potential remains finite and increases across a row, even as ZZ\rightarrow\infty. The local density approximation becomes chemically accurate (and possibly exact) in some cases. Extended Thomas-Fermi theory matches the shell-average of both the ionization potential and density change. Exact results are given in the limit of weak electron-electron repulsion.Comment: 4 pages, 5 figure

    Shallow-water Strontium-90 anomaly about the Antilles Arc----1970

    Get PDF
    Vertical profiles about the southeastern approaches to the Caribbean in early 1970 have shown a consistent Sr-90 inversion, with the maximum concentrations at depths of about room. It appears that four water masses may be involved, in this area, in a very complicated mixing and overlayering phenomenon

    Hope, despair and transformation: Climate change and the promotion of mental health and wellbeing

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This article aims to provide an introduction to emerging evidence and debate about the relationship between climate change and mental health.</p> <p>Discussion and Conclusion</p> <p>The authors argue that:</p> <p>i) the direct impacts of climate change such as extreme weather events will have significant mental health implications;</p> <p>ii) climate change is already impacting on the social, economic and environmental determinants of mental health with the most severe consequences being felt by disadvantaged communities and populations;</p> <p>iii) understanding the full extent of the long term social and environmental challenges posed by climate change has the potential to create emotional distress and anxiety; and</p> <p>iv) understanding the psycho-social implications of climate change is also an important starting point for informed action to prevent dangerous climate change at individual, community and societal levels.</p

    Relevance of the slowly-varying electron gas to atoms, molecules, and solids

    Get PDF
    Under a certain scaling, the electron densities of finite systems become both large and slowly-varying, so that the gradient expansions of the density functionals for the Kohn-Sham kinetic and exchange energies become asymptotically exact to order 2\nabla^2. Neutral atoms of large ZZ scale similarly, but a cusp correction at the nucleus requires generalizing the gradient expansion for exchange, producing the wrong gradient coefficient in the slowly-varying limit. Meta-generalized gradient approximations (meta-GGA's) recover both the slowly-varying and large-ZZ limits. GGA correlation energies of large-Z atoms are found to be accurate.Comment: 5 pages, 4 figures, submitted at PR

    Modeling a Snap-Action, Variable-Delay Switch Controlling Extrinsic Cell Death

    Get PDF
    When exposed to tumor necrosis factor (TNF) or TNF-related apoptosis-inducing ligand (TRAIL), a closely related death ligand and investigational therapeutic, cells enter a protracted period of variable duration in which only upstream initiator caspases are active. A subsequent and sudden transition marks activation of the downstream effector caspases that rapidly dismantle the cell. Thus, extrinsic apoptosis is controlled by an unusual variable-delay, snap-action switch that enforces an unambiguous choice between life and death. To understand how the extrinsic apoptosis switch functions in quantitative terms, we constructed a mathematical model based on a mass-action representation of known reaction pathways. The model was trained against experimental data obtained by live-cell imaging, flow cytometry, and immunoblotting of cells perturbed by protein depletion and overexpression. The trained model accurately reproduces the behavior of normal and perturbed cells exposed to TRAIL, making it possible to study switching mechanisms in detail. Model analysis shows, and experiments confirm, that the duration of the delay prior to effector caspase activation is determined by initiator caspase-8 activity and the rates of other reactions lying immediately downstream of the TRAIL receptor. Sudden activation of effector caspases is achieved downstream by reactions involved in permeabilization of the mitochondrial membrane and relocalization of proteins such as Smac. We find that the pattern of interactions among Bcl-2 family members, the partitioning of Smac from its binding partner XIAP, and the mechanics of pore assembly are all critical for snap-action control

    A study of elevated temperature testing techniques for the fatigue behavior of PMCS: Application to T650-35/AMB21

    Get PDF
    An experimental study was conducted to investigate the mechanical behavior of a T650-35/AMB21 eight-harness satin weave polymer composite system. Emphasis was placed on the development and refinement of techniques used in elevated temperature uniaxial PMC testing. Issues such as specimen design, gripping, strain measurement, and temperature control and measurement were addressed. Quasi-static tensile and fatigue properties (R(sub sigma) = 0.1) were examined at room and elevated temperatures. Stiffness degradation and strain accumulation during fatigue cycling were recorded to monitor damage progression and provide insight for future analytical modeling efforts. Accomplishments included an untabbed dog-bone specimen design which consistently failed in the gage section, accurate temperature control and assessment, and continuous in-situ strain measurement capability during fatigue loading at elevated temperatures. Finally, strain accumulation and stiffness degradation during fatigue cycling appeared to be good indicators of damage progression

    The Local Effects of Cosmological Variations in Physical 'Constants' and Scalar Fields I. Spherically Symmetric Spacetimes

    Full text link
    We apply the method of matched asymptotic expansions to analyse whether cosmological variations in physical `constants' and scalar fields are detectable, locally, on the surface of local gravitationally bound systems such as planets and stars, or inside virialised systems like galaxies and clusters. We assume spherical symmetry and derive a sufficient condition for the local time variation of the scalar fields that drive varying constants to track the cosmological one. We calculate a number of specific examples in detail by matching the Schwarzschild spacetime to spherically symmetric inhomogeneous Tolman-Bondi metrics in an intermediate region by rigorously construction matched asymptotic expansions on cosmological and local astronomical scales which overlap in an intermediate domain. We conclude that, independent of the details of the scalar-field theory describing the varying `constant', the condition for cosmological variations to be measured locally is almost always satisfied in physically realistic situations. The proof of this statement provides a rigorous justification for using terrestrial experiments and solar system observations to constrain or detect any cosmological time variations in the traditional `constants' of Nature.Comment: 30 pages, 3 figures; corrected typo

    Formation and structural chemistry of the unusual cyanide-bridged dinuclear species [Ru-2(NN)(2)(CN)(7)](3-)(NN=2,2 '-bipyridine or 1,10-phenanthroline)

    Get PDF
    Crystallisation of simple cyanoruthenate complex anions [Ru(NN)(CN)(4)](2) (NN = 2,2'-bipyridine or 1,10-phenanthroline) in the presence of Lewis-acidic cations such as Ln(III) or guanidinium cations results, in addition to the expected [Ru(NN)(CN)(4)](2) salts, in the formation of small amounts of salts of the dinuclear species [Ru-2(NN)(2)(CN)(7)](3). These cyanide-bridged anions have arisen from the combination of two monomer units [Ru(NN)(CN)(4)](2) following the loss of one cyanide, presumably as HCN. The crystal structures of [Nd(H2O)(5.5)][Ru-2(bipy)(2)(CN)(7)] center dot 11H(2)O and [Pr(H2O)(6)][Ru-2(phen)(2)(CN)(7)] center dot 9H(2)O show that the cyanoruthenate anions form Ru-CN-Ln bridges to the Ln(III) cations, resulting in infinite coordination polymers consisting of fused Ru(2)Ln(2)(mu-CN)(4) squares and Ru(4)Ln(2)(mu-CN)(6) hexagons, which alternate to form a one-dimensional chain. In [CH6N3](3)[Ru-2(bipy)(2)(CN)(7)] center dot 2H(2)O in contrast the discrete complex anions are involved in an extensive network of hydrogen-bonding involving terminal cyanide ligands, water molecules, and guanidinium cations. In the [Ru-2(NN)(2)(CN)(7)](3) anions themselves the two NN ligands are approximately eclipsed, lying on the same side of the central Ru-CN-Ru axis, such that their peripheries are in close contact. Consequently, when NN = 4,4'-Bu-t(2)-2,2'-bipyridine the steric bulk of the t-butyl groups prevents the formation of the dinuclear anions, and the only product is the simple salt of the monomer, [CH6N3](2)[Ru((t)Bu(2)bipy)(CN)(4)] center dot 2H(2)O. We demonstrated by electrospray mass spectrometry that the dinuclear by-product [Ru-2(phen)(2)(CN)(7)](3) could be formed in significant amounts during the synthesis of monomeric [Ru(phen)(CN)(4)](2) if the reaction time was too long or the medium too acidic. In the solid state the luminescence properties of [Ru-2(bipy)(2)(CN)(7)](3) (as its guanidinium salt) are comparable to those of monomeric [Ru(bipy)(CN)(4)](2), with a (MLCT)-M-3 emission at 581 nm

    Towards More Precise Survey Photometry for PanSTARRS and LSST: Measuring Directly the Optical Transmission Spectrum of the Atmosphere

    Full text link
    Motivated by the recognition that variation in the optical transmission of the atmosphere is probably the main limitation to the precision of ground-based CCD measurements of celestial fluxes, we review the physical processes that attenuate the passage of light through the Earth's atmosphere. The next generation of astronomical surveys, such as PanSTARRS and LSST, will greatly benefit from dedicated apparatus to obtain atmospheric transmission data that can be associated with each survey image. We review and compare various approaches to this measurement problem, including photometry, spectroscopy, and LIDAR. In conjunction with careful measurements of instrumental throughput, atmospheric transmission measurements should allow next-generation imaging surveys to produce photometry of unprecedented precision. Our primary concerns are the real-time determination of aerosol scattering and absorption by water along the line of sight, both of which can vary over the course of a night's observations.Comment: 41 pages, 14 figures. Accepted PAS
    corecore