18,972 research outputs found
Maclisp extensions
A common subset of selected facilities available in Maclisp and its derivatives (PDP-10 and Multics Maclisp, Lisp Machine Lisp (Zetalisp), and NIL) is decribed. The object is to add in writing code which can run compatibly in more than one of these environments
Average and worst-case specifications of precipitating auroral electron environment
The precipitation electrons in the auroral environment are highly variable in their energy and intensity in both space and time. As such they are a source of potential hazard to the operation of the Space Shuttle and other large spacecraft operating in polar orbit. In order to assess these hazards both the average and extreme states of the precipitating electrons must be determined. Work aimed at such a specification is presented. First results of a global study of the average characteristics are presented. In this study the high latitude region was divided into spatial elements in magnetic local time and corrected geomagnetic latitude. The average electron spectrum was then determined in each spatial element for seven different levels of activity as measured by K sub p using an extremely large data set of auroral observations. Second a case study of an extreme auroral electron environment is presented, in which the electrons are accelerated through field aligned potential as high as 30,000 volts and in which the spacecraft is seen to charge negatively to a potential approaching .5 kilovolts
Spectrophotometry of 2 complete samples of flat radio spectrum quasars
Spectrophotometry of two complete samples of flat-spectrum radio quasars show that for these objects there is a strong correlation between the equivalent width of the CIV wavelength 1550 emission line and the luminosity of the underlying continuum. Assuming Friedmann cosmologies, the scatter in this correlation is a minimum for q (sub o) is approximately 1. Alternatively, luminosity evolution can be invoked to give compact distributions for q (sub o) is approximately 0 models. A sample of Seyfert galaxies observed with IUE shows that despite some dispersion the average equivalent width of CIV wavelength 1550 in Seyfert galaxies is independent of the underlying continuum luminosity. New redshifts for 4 quasars are given
Improved initial data for black hole binaries by asymptotic matching of post-Newtonian and perturbed black hole solutions
We construct approximate initial data for non-spinning black hole binary
systems by asymptotically matching the 4-metrics of two tidally perturbed
Schwarzschild solutions in isotropic coordinates to a resummed post-Newtonian
4-metric in ADMTT coordinates. The specific matching procedure used here
closely follows the calculation in gr-qc/0503011, and is performed in the so
called buffer zone where both the post-Newtonian and the perturbed
Schwarzschild approximations hold. The result is that both metrics agree in the
buffer zone, up to the errors in the approximations. However, since isotropic
coordinates are very similar to ADMTT coordinates, matching yields better
results than in the previous calculation, where harmonic coordinates were used
for the post-Newtonian 4-metric. In particular, not only does matching improve
in the buffer zone, but due to the similarity between ADMTT and isotropic
coordinates the two metrics are also close to each other near the black hole
horizons. With the help of a transition function we also obtain a global smooth
4-metric which has errors on the order of the error introduced by the more
accurate of the two approximations we match. This global smoothed out 4-metric
is obtained in ADMTT coordinates which are not horizon penetrating. In
addition, we construct a further coordinate transformation that takes the
4-metric from global ADMTT coordinates to new coordinates which are similar to
Kerr-Schild coordinates near each black hole, but which remain ADMTT further
away from the black holes. These new coordinates are horizon penetrating and
lead, for example, to a lapse which is everywhere positive on the t=0 slice.
Such coordinates may be more useful in numerical simulations.Comment: 25 pages, 21 figures. Replaced with accepted versio
Herding in Financial Behaviour: A Behavioural and Neuroeconomic Analysis of Individual Differences
Experimental analyses have identified significant tendencies for individuals to follow herd decisions, a finding which has been explained using Bayesian principles. This paper outlines the results from a herding task designed to extend these analyses using evidence from a functional magnetic resonance imaging (fMRI) study. Empirically, we estimate logistic functions using panel estimation techniques to quantify the impact of herd decisions on individuals' financial decisions. We confirm that there are statistically significant propensities to herd and that social information about others' decisions has an impact on individuals' decisions. We extend these findings by identifying associations between herding propensities and individual characteristics including gender, age and various personality traits. In addition fMRI evidence shows that individual differences correlate strongly with activations in the amygdala – an area of the brain commonly associated with social decision-making. Individual differences also correlate strongly with amygdala activations during herding decisions. These findings are used to construct a two stage least squares model of financial herding which confirms that individual differences and neural responses play a role in modulating the propensity to herd.amygdal
Recommended from our members
Herding in Financial Behaviour
Experimental analyses have identified significant tendencies for individuals to follow herd decisions, a finding which has been explained using Bayesian principles. This paper outlines the results from a herding task designed to extend these analyses using evidence from a functional magnetic resonance imaging (fMRI) study. Empirically, we estimate logistic functions using panel estimation techniques to quantify the impact of herd decisions on individuals' financial decisions. We confirm that there are statistically significant propensities to herd and that social information about others' decisions has an impact on individuals' decisions. We extend these findings by identifying associations between herding propensities and individual characteristics including gender, age and various personality traits. In addition fMRI evidence shows that individual differences correlate strongly with activations in the amygdala ï¾– an area of the brain commonly associated with social decision-making. Individual differences also correlate strongly with amygdala activations during herding decisions. These findings are used to construct a two stage least squares model of financial herding which confirms that individual differences and neural responses play a role in modulating the propensity to herd
Impacts of Personality on Herding in Financial Decision-Making
It is well known that rational bubbles can be sustained in balanced growth path of a deterministic economy when the return to capital r is equal to the growth rate g. When there is a lack of stores of value, bubbles can implement an efficient allocation. This paper considers a world where r fluctuates over time due to shocks to the marginal productivity of capital. Then, bubbles further efficiency, though they cannot implement first best. While bubbles can only be sustained when r = g in a deterministic economy, r > g "on average" in a stochastic economy. Fiscal policy improves welfare by adding an extra asset. Where only the elderly contribute to shifting resources between investment and consumption in a bubbly economy, fiscal policy allows part of that burden to be shifted to the young. Contrary to common wisdom, trade in bubbly assets implements intergenerational transfers, while fiscal policy implements intragenerational transfers. Hence, while bubbles and fiscal policy are perfect substitutes in the deterministic economy, fiscal policy dominates bubbles in a stochastic economy. For plausible parameter values, a higher degree of dynamic inefficiency should lead to a higher sovereign debt
Binary black hole initial data from matched asymptotic expansions
We present an approximate metric for a binary black hole spacetime to
construct initial data for numerical relativity. This metric is obtained by
asymptotically matching a post-Newtonian metric for a binary system to a
perturbed Schwarzschild metric for each hole. In the inner zone near each hole,
the metric is given by the Schwarzschild solution plus a quadrupolar
perturbation corresponding to an external tidal gravitational field. In the
near zone, well outside each black hole but less than a reduced wavelength from
the center of mass of the binary, the metric is given by a post-Newtonian
expansion including the lowest-order deviations from flat spacetime. When the
near zone overlaps each inner zone in a buffer zone, the post-Newtonian and
perturbed Schwarzschild metrics can be asymptotically matched to each other. By
demanding matching (over a 4-volume in the buffer zone) rather than patching
(choosing a particular 2-surface in the buffer zone), we guarantee that the
errors are small in all zones. The resulting piecewise metric is made formally
with smooth transition functions so as to obtain the finite
extrinsic curvature of a 3-slice. In addition to the metric and extrinsic
curvature, we present explicit results for the lapse and the shift, which can
be used as initial data for numerical simulations. This initial data is not
accurate all the way to the asymptotically flat ends inside each hole, and
therefore must be used with evolution codes which employ black hole excision
rather than puncture methods. This paper lays the foundations of a method that
can be sraightforwardly iterated to obtain initial data to higher perturbative
order.Comment: 24 pages, 15 figures. Replaced with published version. Major editing
of text, no major change to the physic
A global climatology for equatorial plasma bubbles in the topside ionosphere
We have developed a global climatology of equatorial plasma bubble (EPB) occurrence based on evening sector plasma density measurements from polar-orbiting Defense Meteorological Satellite Program (DMSP) spacecraft during 1989-2004. EPBs are irregular plasma density depletions in the post-sunset ionosphere that degrade communication and navigation signals. More than 14400 EPBs were identified in ~134000 DMSP orbits. DMSP observations basically agree with Tsunoda's (1985) hypothesis that EPB rates peak when the terminator is aligned with the Earth's magnetic field, but there are also unpredicted offsets in many longitude sectors. We present an updated climatology for the full database from 1989-2004 along with new plots for specific phases of the solar cycle: maximum 1989-1992 and 1999-2002, minimum 1994-1997, and transition years 1993, 1998, and 2003. As expected, there are significant differences between the climatologies for solar maximum and minimum and between the two solar maximum phases as well. We also compare DMSP F12, F14, F15, and F16 observations at slightly different local times during 2000-2004 to examine local time effects on EPB rates. The global climatologies developed using the DMSP EPB database provide an environmental context for the long-range prediction tools under development for the Communication/Navigation Outage Forecasting System (C/NOFS) mission
- …