21,538 research outputs found
Comparison of numerical methods for the calculation of cold atom collisions
Three different numerical techniques for solving a coupled channel
Schroedinger equation are compared. This benchmark equation, which describes
the collision between two ultracold atoms, consists of two channels, each
containing the same diagonal Lennard-Jones potential, one of positive and the
other of negative energy. The coupling potential is of an exponential form. The
methods are i) a recently developed spectral type integral equation method
based on Chebyshev expansions, ii) a finite element expansion, and iii) a
combination of an improved Numerov finite difference method and a Gordon
method. The computing time and the accuracy of the resulting phase shift is
found to be comparable for methods i) and ii), achieving an accuracy of ten
significant figures with a double precision calculation. Method iii) achieves
seven significant figures. The scattering length and effective range are also
obtained.Comment: 22 pages, 3 figures, submitted to J. Comput. Phys. documentstyle
[thmsa,sw20aip]{article} in .te
R-matrix Floquet theory for laser-assisted electron-atom scattering
A new version of the R-matrix Floquet theory for laser-assisted electron-atom
scattering is presented. The theory is non-perturbative and applicable to a
non-relativistic many-electron atom or ion in a homogeneous linearly polarized
field. It is based on the use of channel functions built from field-dressed
target states, which greatly simplifies the general formalism.Comment: 18 pages, LaTeX2e, submitted to J.Phys.
Nonlinear Dynamics in the Resonance Lineshape of NbN Superconducting Resonators
In this work we report on unusual nonlinear dynamics measured in the
resonance response of NbN superconducting microwave resonators. The nonlinear
dynamics, occurring at relatively low input powers (2-4 orders of magnitude
lower than Nb), and which include among others, jumps in the resonance
lineshape, hysteresis loops changing direction and resonance frequency shift,
are measured herein using varying input power, applied magnetic field, white
noise and rapid frequency sweeps. Based on these measurement results, we
consider a hypothesis according to which local heating of weak links forming at
the boundaries of the NbN grains are responsible for the observed behavior, and
we show that most of the experimental results are qualitatively consistent with
such hypothesis.Comment: Updated version (of cond-mat/0504582), 16 figure
Nup358 integrates nuclear envelope breakdown with kinetochore assembly
Nuclear envelope breakdown (NEBD) and release of condensed chromosomes into the cytoplasm are key events in the early stages of mitosis in metazoans. NEBD involves the disassembly of all major structural elements of the nuclear envelope, including nuclear pore complexes (NPCs), and the dispersal of nuclear membrane components. The breakdown process is facilitated by microtubules of the mitotic spindle. After NEBD, engagement of spindle microtubules with chromosome-associated kinetochores leads to chromatid segregation. Several NPC subunits relocate to kinetochores after NEBD. siRNA-mediated depletion of one of these proteins, Nup358, reveals that it is essential for kinetochore function. In the absence of Nup358, chromosome congression and segregation are severely perturbed. At the same time, the assembly of other kinetochore components is strongly inhibited, leading to aberrant kinetochore structure. The implication is that Nup358 plays an essential role in integrating NEBD with kinetochore maturation and function. Mitotic arrest associated with Nup358 depletion further suggests that mitotic checkpoint complexes may remain active at nonkinetochore sites
Testing facial composite construction under witness stress
Facial composite systems may be used by police to help a witness to a crime create a likeness of the perpetrator. Evaluation of new facial composite systems in the laboratory allows a measure of experimental control, but lacks the emotional impact of a real crime. As a step towards a more realistic level of stress for our participant witnesses, we presented target face images while they were engaged in playing an action thriller computer game. The quality of the composites they subsequently produced was compared with that of a second ‘onlooker' participant, who merely observed the game and had the same view of the target face. Heart rate monitoring confirmed that the players were more stressed than the onlookers while the recognition rate of the onlooker composites was twice as good. We conclude that the method holds some promise as a method for composite system evaluation
Feedback system for divertor impurity seeding based on real-time measurements of surface heat flux in the Alcator C-Mod tokamak
Mitigation of the intense heat flux to the divertor is one of the outstanding problems in fusion energy. One technique that has shown promise is impurity seeding, i.e., the injection of low-Z gaseous impurities (typically N2 or Ne) to radiate and dissipate the power before it arrives to the divertor target plate. To this end, the Alcator C-Mod team has created a first-of-its-kind feedback system to control the injection of seed gas based on real-time surface heat flux measurements. Surface thermocouples provide real-time measurements of the surface temperature response to the plasma heat flux. The surface temperature measurements are inputted into an analog computer that "solves" the 1-D heat transport equation to deliver accurate, real-time signals of the surface heat flux. The surface heat flux signals are sent to the C-Mod digital plasma control system, which uses a proportional-integral-derivative (PID) algorithm to control the duty cycle demand to a pulse width modulated piezo valve, which in turn controls the injection of gas into the private flux region of the C-Mod divertor. This paper presents the design and implementation of this new feedback system as well as initial results using it to control divertor heat flux
Geometrothermodynamics
We present the fundamentals of geometrothermodynamics, an approach to study
the properties of thermodynamic systems in terms of differential geometric
concepts. It is based, on the one hand, upon the well-known contact structure
of the thermodynamic phase space and, on the other hand, on the metric
structure of the space of thermodynamic equilibrium states. In order to make
these two structures compatible we introduce a Legendre invariant set of
metrics in the phase space, and demand that their pullback generates metrics on
the space of equilibrium states. We show that Weinhold's metric, which was
introduced {\it ad hoc}, is not contained within this invariant set. We propose
alternative metrics which allow us to redefine the concept of thermodynamic
length in an invariant manner and to study phase transitions in terms of
curvature singularities.Comment: Revised version, to be published in Jour. Math. Phy
- …