26 research outputs found

    Konditionale Überexpression der neuronalen NO-Synthase wirkt kardioprotektiv bei IschĂ€mie-Reperfusion

    No full text
    Zusammenfassung: Wie frĂŒher schon gezeigt, wird der L-Typ Ca2+-Kanal durch eine induzierbare, myokardspezifische Überexpression der neuronalen Stickstoffmonoxidsynthase (nNOS) inhibiert. Gleichzeitig bewirkt diese Überexpression eine verminderte kardiale KontraktilitĂ€t1 (Burkard N. et al. (2007). Circ Res 100, 32-44). nNOS interagiert mit vielen verschiedenen Kompartimenten und KanĂ€len innerhalb der Zelle. In dieser Arbeit wurde gezeigt, dass eine nNOS Überexpression nach IschĂ€mie-Reperfusion kardioprotektiv wirkt. Dieses wird durch eine Inhibition der Mitochondrienfunktion und durch eine Verminderung der reaktiven Sauerstoffspezies (ROS) ermöglicht. In einer frĂŒheren Arbeit wurde der Effekt der induzierbaren und myokardspezifischen Überexpression von nNOS unter physiologischen Bedingungen am transgenen Tiermodell untersucht. Diese Arbeit beschĂ€ftigt sich nun mit der Überexpression von nNOS unter pathophysiologischen (IschĂ€mie-Reperfusion) Bedingungen. Ein IschĂ€mie-Reperfusions-Schaden bewirkt bei Wildtyp-MĂ€usen, sowie bei transgener nNOS Überexpression eine Anreicherung von nNOS in den Mitochondrien. Elektronenmikroskopische Aufnahmen von Mausmyokard haben gezeigt, dass bei Überexpression nNOS zusĂ€tzlich in den Mitochondrien lokalisiert ist. Diese Translokation von nNOS in die Mitochondrien ist abhĂ€ngig von HSP90. IschĂ€mie- Reperfusionsexperimente an isolierten MĂ€useherzen zeigten einen kardioprotektiven Effekt der nNOS Überexpression (30min post ischemia, LVDP 27.0±2.5mmHg vs. 45.2±1.9mmHg, n=12, p<0.05). Dieser positive Effekt konnte bei der Bestimmung der InfarktgrĂ¶ĂŸe bestĂ€tigt werden. nNOS ĂŒberexprimierende MĂ€use hatten eine kleinere InfarktgrĂ¶ĂŸe nach IschĂ€mie-Reperfusion (36.6±8.4 relative % vs. 61.1±2.9 relative %, n=8, p<0.05). Die Überexpression von nNOS bewirkte ebenfalls einen signifikanten Anstieg des mitochondrialen Nitrit-Levels, begleitet von einer Verminderung der Cytochrom C Oxidase AktivitĂ€t (72.0±8.9units/ml in nNOS overexpressing mice vs. 113.2±17.1units/ml in non-induced mice, n=12, p<0.01), was zu einer Hemmung der Mitochondrienfunktion fĂŒhrt. Dementsprechend war der Sauerstoffverbrauch (gemessen an isolierten Herzmuskelstreifen) schon unter basalen Bedingungen beinNOS Überexpression vermindert (0.016±0.0015 vs. 0.024±0.006ml[O2] x mm-3 x min-1, n=13, p<0.05). Außerdem war die ROS Konzentration in Herzen von nNOS ĂŒberexprimierenden MĂ€usen signifikant vermindert (6.14±0.685 vs. 14.53±1.7ÎŒM, n=8, p<0.01). Die Zugabe von verschiedenen Inhibitoren, Western Blot- und AktivitĂ€tsuntersuchungen zeigten schließlich, dass diese niedrigere ROS Konzentration durch eine verminderte Xanthin Oxidoreduktase AktivitĂ€t hervorgerufen wurde. Zusammenfassend hat diese Arbeit gezeigt, dass eine induzierbare und myokardspezifische Überexpression von nNOS unter pathophysiologischen Bedingungen (IschĂ€mie-Reperfusion) kardioprotektiv wirkt. ZusĂ€tzlich zu der Verminderung des myokardialen Ca2+-Überschusses nach Reperfusion könnte dieser protektive Effekt durch eine Hemmung der Mitochondrienfunktion bedingt sein, schließlich wird der Sauerstoffverbrauch schon unter basalen Bedingungen reduziertSummary: I previously demonstrated that conditional overexpression of the neuronal nitric oxide synthase (nNOS) inhibited L-type Ca2+-channels and decreased myocardial contractility1 (Burkard N. et al. (2007). Circ Res 100, 32-44). However, nNOS has multiple targets within the cardiac myocyte and it is possible that interesting biological functions of this protein remain to be elucidated. In this study, I showed that nNOS overexpression has a cardioprotective effect after ischemia-reperfusion injury by inhibiting mitochondrial function and reducing the generation of reactive oxygen species (ROS). The effect of conditional nNOS overexpression in cardiac myocytes in ischemiareperfusion injury was assessed. Ischemia-reperfusion injury in WT mice resulted in nNOS accumulation in the mitochondria. Similary, transgenic nNOS overexpression caused nNOS abundance in mitochondria. Electron microscopy of mouse myocardium from nNOS overexpressing mice showed that after induction of its expression, nNOS is additionally localised in mitochondria. nNOS translocation into mitochondria was dependent on HSP90. Ischemia-reperfusion experiments in isolated hearts showed a cardioprotective effect of nNOS overexpression (30min post-ischemia, LVDP 27.0±2.5mmHg in non-induced animals vs. 45.2±1.9mmHg in nNOS overexpressing mice, n=12, p<0.05). Consistently with this finding, in vivo the infarct size within the area at risk was significantly decreased in nNOS overexpressing mice compared to non-induced animals (36.6±8.4 relative % vs. 61.1±2.9 relative %, n=12, p<0.05). nNOS overexpression also caused a significant increase in mitochondrial nitrite levels accompanied by a decrease of cytochrome c oxidase activity (72.0±8.9units/ml in nNOS overexpressing mice vs. 113.2±17.1units/ml in non-induced mice, n=12, p<0.01) resulting in an inhibition of mitochondrial function. Accordingly, O2-consumption (MVO2) in isolated heart muscle stripes was decreased in nNOS overexpressing mice, already under resting conditions (0.016±0.0015 vs. 0.024±0.006ml[O2] x mm-3 x min-1, n=13, p<0.05). Additionally, this study showed that the ROS concentration was significantlydecreased in hearts of nNOS overexpressing mice compared to non-induced animals (6.14±0.685 vs. 14.53±1.7ÎŒM, n=8, p<0.01). Application of different inhibitors, Western Blot analysis and activity assays showed that the lower ROS concentration in nNOS overexpressing mice was caused by inhibition of the xanthine oxidoreductase (XOR) activity by the increased abundance of nNOS expression. In summary, this study demonstrated that the conditional transgenic overexpression of nNOS resulted in myocardial protection after ischemia-reperfusion injury. Besides reduction of myocardial Ca2+-overload after reperfusion this might be caused by inhibition of mitochondrial function through nNOS, which reduced myocardial oxygen consumption already under baseline conditions (Burkard N. conditionally accepted b

    Signal Transmission Paths and Prevention Options for Cardiac Hypertrophy: Conditional Overexpression of Neuronal Nitric Oxide Synthase Is Cardioprotective in Ischemia-Reperfusion

    No full text
    I previously demonstrated that conditional overexpression of the neuronal nitric oxide synthase (nNOS) inhibited L-type Ca2+-channels and decreased myocardial contractility1 (Burkard N. et al. (2007). Circ Res 100, 32-44). However, nNOS has multiple targets within the cardiac myocyte and it is possible that interesting biological functions of this protein remain to be elucidated. In this study, I showed that nNOS overexpression has a cardioprotective effect after ischemia-reperfusion injury by inhibiting mitochondrial function and reducing the generation of reactive oxygen species (ROS). The effect of conditional nNOS overexpression in cardiac myocytes in ischemiareperfusion injury was assessed. Ischemia-reperfusion injury in WT mice resulted in nNOS accumulation in the mitochondria. Similary, transgenic nNOS overexpression caused nNOS abundance in mitochondria. Electron microscopy of mouse myocardium from nNOS overexpressing mice showed that after induction of its expression, nNOS is additionally localised in mitochondria. nNOS translocation into mitochondria was dependent on HSP90. Ischemia-reperfusion experiments in isolated hearts showed a cardioprotective effect of nNOS overexpression (30min post-ischemia, LVDP 27.0±2.5mmHg in non-induced animals vs. 45.2±1.9mmHg in nNOS overexpressing mice, n=12, p<0.05). Consistently with this finding, in vivo the infarct size within the area at risk was significantly decreased in nNOS overexpressing mice compared to non-induced animals (36.6±8.4 relative % vs. 61.1±2.9 relative %, n=12, p<0.05). nNOS overexpression also caused a significant increase in mitochondrial nitrite levels accompanied by a decrease of cytochrome c oxidase activity (72.0±8.9units/ml in nNOS overexpressing mice vs. 113.2±17.1units/ml in non-induced mice, n=12, p<0.01) resulting in an inhibition of mitochondrial function. Accordingly, O2-consumption (MVO2) in isolated heart muscle stripes was decreased in nNOS overexpressing mice, already under resting conditions (0.016±0.0015 vs. 0.024±0.006ml[O2] x mm-3 x min-1, n=13, p<0.05). Additionally, this study showed that the ROS concentration was significantly decreased in hearts of nNOS overexpressing mice compared to non-induced animals (6.14±0.685 vs. 14.53±1.7ΌM, n=8, p<0.01). Application of different inhibitors, Western Blot analysis and activity assays showed that the lower ROS concentration in nNOS overexpressing mice was caused by inhibition of the xanthine oxidoreductase (XOR) activity by the increased abundance of nNOS expression. In summary, this study demonstrated that the conditional transgenic overexpression of nNOS resulted in myocardial protection after ischemia-reperfusion injury. Besides reduction of myocardial Ca2+-overload after reperfusion this might be caused by inhibition of mitochondrial function through nNOS, which reduced myocardial oxygen consumption already under baseline conditions (Burkard N. conditionally accepted by Circ)

    Another Day, Another Dollar General: The Architectural, Environmental, and Economic Impacts of Dollar Stores

    No full text
    In 2022, one in three new retail openings in America is a dollar store. Dollar General Corporation, the country’s largest “small-box” retailer, owns and operates the majority of these stores, with nearly 18,000 locations nationwide. By strategically expanding into sites where Walmart and other “big-box” grocers won’t, Dollar General justifies their aggressive expansion as providing at least one food and retail option in areas considered to be food deserts. This significant retail shift is one of the outcomes of – and in turn, a cause of - the well-told story of American food culture where at least 70% of the food Americans eat is processed and manufactured, rather than consumed fresh. Dollar General’s impact on the American landscape, society, and culture is profound and growing exponentially into issues of land use, food culture, economic health, agricultural practices, and supply infrastructures, as well as exacerbating divides among Americans along lines of race, class, religion, politics, and geography. As the dollar-store empire continues its expansion in both rural and urban communities, “small-box” stores are becoming increasingly critical to the function of daily life. Nevertheless, this building typology and the larger ecosystems it operates within are under-explored in architectural discourse. The research seeks to uncover the covert and overt relationships between Dollar General and the communities it serves locally and globally, looking at production processes, marketing strategies, real estate tactics, and fresh food distribution. The research is working to position Dollar General in a more proactive role in terms of how it might work to mitigate its own contributions to catastrophic climate change. By inventorying DG’s products – many of which satisfy basic human needs – the goal is to facilitate a relationship between Dollar General and local community non-profits who collect and distribute essential goods in the aftermath of climate-related disasters

    A molecular mechanism improving the contractile state in human myocardial hypertrophy

    Get PDF
    BACKGROUND: Various molecular mechanisms are operative in altering the sarcomeric function of the heart under increased hemodynamic workload. Expression of the atrial isoform (ALC-1) of the essential myosin light chain, a shift from alpha-myosin heavy chain (MHC) to beta-MHC, increased phosphorylation of the regulatory myosin light chains and increased troponin I (TnI) phosphorylation have been reported to modulate cardiac contractility in rodents. METHODS: TO ASSESS A POSSIBLE CONTRIBUTION OF THESE SARCOMERIC PROTEINS TO CARDIAC PERFORMANCE IN HUMAN MYOCARDIAL HYPERTROPHY, TWO DIFFERENT FORMS OF CARDIAC HYPERTROPHY WERE INVESTIGATED: 19 patients with hypertropic obstructive cardiomyopathy (HOCM) and 13 patients with aortic stenosis (AS) with marked left ventricular hypertrophy and normal systolic function. RESULTS: There was no change in MHC gene expression, regulatory myosin light chain or TnI phosphorylation status in normal heart (NH), HOCM and AS patients. However, patients with hypertrophied myocardium expressed ALC-1 that was not detectable in NH. ALC-1 protein expression correlated positively with the left ventricular ejection fraction. In patients with hypertrophied myocardium, there was a mean ALC-1 protein expression of 12.7+/-3% (range 3.6% to 32%). CONCLUSION: In humans, ALC-1 expression is in vivo a powerful molecular mechanism of the sarcomere to maintain or improve myocardial contractility under increased hemodynamic demands

    Targeted proteolysis sustains calcineurin activation.

    No full text
    BACKGROUND: Calcineurin (CnA) is important in the regulation of myocardial hypertrophy. We demonstrated that targeted proteolysis of the CnA autoinhibitory domain under pathological myocardial workload leads to increased CnA activity in human myocardium. Here, we investigated the proteolytic mechanism leading to activation of CnA. METHODS AND RESULTS: In patients with diseased myocardium, we found strong nuclear translocation of CnA. In contrast, in normal human myocardium, there was a cytosolic distribution of CnA. Stimulation of rat cardiomyocytes with angiotensin (Ang) II increased calpain activity significantly (433+/-11%; P<0.01; n=6) and caused proteolysis of the autoinhibitory domain of CnA. Inhibition of calpain by a membrane-permeable calpain inhibitor prevented proteolysis. We identified the cleavage site of calpain in the human CnA sequence at amino acid 424. CnA activity was increased after Ang II stimulation (310+/-29%; P<0.01; n=6) and remained high after removal of Ang II (214+/-17%; P<0.01; n=6). Addition of a calpain inhibitor to the medium decreased CnA activity (110+/-19%; P=NS; n=6) after removal of Ang II. Ang II stimulation of cardiomyocytes also translocated CnA into the nucleus as demonstrated by immunohistochemical staining and transfection assays with GFP-tagged CnA. Calpain inhibition and therefore suppression of calpain-mediated proteolysis of CnA enabled CnA exit from the nucleus. CONCLUSIONS: Ang II stimulation of cardiomyocytes increased calpain activity, leading to proteolysis of the autoinhibitory domain of CnA. This causes an increase in CnA activity and results in nuclear translocation of CnA. Loss of the autoinhibitory domain renders CnA constitutively nuclear and active, even after removal of the hypertrophic stimulus

    AT2 receptor activation regulates myocardial eNOS expression via the calcineurin-NF-AT pathway.

    No full text
    The role of AT2-receptors has recently been subject of considerable debate. We investigated the influence of AT2-stimulation/inhibition on myocardial endothelial NO-synthase (eNOS, NOS-III) promoter activity and eNOS protein expression. Stimulation of rat cardiomyocytes with angiotensin II (AngII) increased eNOS protein expression 3.3-fold. This was blocked by Cyclosporin A (CsA). Inhibition of the AT1-receptor did not reduce AngII-mediated eNOS protein expression, whereas AT2 stimulation increased it 2.4-fold and AT2 inhibition suppressed it. The modulatory effects of the AT2-receptor on eNOS expression was confirmed in mice with a genetic deletion of the AT2-receptor (AT2-KO). In gel shift assays two putative NF-AT sites in a 1.6 kb eNOS promoter fragment showed NF-AT binding and a supershift by NF-AT2(-c1)-specific antibodies. Stimulation of transfected cells with AngII or specific AT2-receptor agonists resulted in a significant increase in eNOS promoter activity, which was blocked by CsA, MCIP1, and mutation of an upstream NF-AT site. CONCLUSION: 1) AngII-stimulation of the myocardium, both in vivo and in vitro, is accompanied by increased expression of eNOS. 2) This effect is mediated by the calcineurin pathway and is induced by the AT2-receptor. 3) These results define a calcineurin/NF-AT/eNOS pathway as downstream effector of AT2-receptor activation in the myocardium

    Evaluation of a miniaturized biologically vascularized scaffold in vitro and in vivo

    No full text
    In tissue engineering, the generation and functional maintenance of dense voluminous tissues is mainly restricted due to insufficient nutrient supply. Larger three-dimensional constructs, which exceed the nutrient diffusion limit become necrotic and/or apoptotic in long-term culture if not provided with an appropriate vascularization. Here, we established protocols for the generation of a pre-vascularized biological scaffold with intact arterio-venous capillary loops from rat intestine, which is decellularized under preservation of the feeding and draining vascular tree. Vessel integrity was proven by marker expression, media/blood reflow and endothelial LDL uptake. In vitro maintenance persisted up to 7 weeks in a bioreactor system allowing a stepwise reconstruction of fully vascularized human tissues and successful in vivo implantation for up to 4 weeks, although with time-dependent decrease of cell viability. The vascularization of the construct lead to a 1.5× increase in cellular drug release compared to a conventional static culture in vitro. For the first time, we performed proof-of-concept studies demonstrating that 3D tissues can be maintained within a miniaturized vascularized scaffold in vitro and successfully implanted after re-anastomosis to the intrinsic blood circulation in vivo. We hypothesize that this technology could serve as a powerful platform technology in tissue engineering and regenerative medicine

    The Functional Significance of Posttranslational Modifications on Polo-Like Kinase 1 Revealed by Chemical Genetic Complementation

    No full text
    <div><p>Mitosis is coordinated by carefully controlled phosphorylation and ubiquitin-mediated proteolysis. Polo-like kinase 1 (Plk1) plays a central role in regulating mitosis and cytokinesis by phosphorylating target proteins. Yet, Plk1 is itself a target for posttranslational modification by phosphorylation and ubiquitination. We developed a chemical-genetic complementation assay to evaluate the functional significance of 34 posttranslational modifications (PTMs) on human Plk1. To do this, we used human cells that solely express a modified analog-sensitive Plk1 (Plk1<sup>AS</sup>) and complemented with wildtype Plk1. The wildtype Plk1 provides cells with a functional Plk1 allele in the presence of 3-MB-PP1, a bulky ATP-analog inhibitor that specifically inhibits Plk1<sup>AS</sup>. Using this approach, we evaluated the ability of 34 singly non-modifiable Plk1 mutants to complement Plk1<sup>AS</sup> in the presence of 3-MB-PP1. Mutation of the T-loop activating residue T210 and adjacent T214 are lethal, but surprisingly individual mutation of the remaining 32 posttranslational modification sites did not disrupt the essential functions of Plk1. To evaluate redundancy, we simultaneously mutated all phosphorylation sites in the kinase domain except for T210 and T214 or all sites in the C-terminal polo-box domain (PBD). We discovered that redundant phosphorylation events within the kinase domain are required for accurate chromosome segregation in anaphase but those in the PBD are dispensable. We conclude that PTMs within the T-loop of Plk1 are essential and nonredundant, additional modifications in the kinase domain provide redundant control of Plk1 function, and those in the PBD are dispensable for essential mitotic functions of Plk1. This comprehensive evaluation of Plk1 modifications demonstrates that although phosphorylation and ubiquitination are important for mitotic progression, many individual PTMs detected in human tissue may have redundant, subtle, or dispensable roles in gene function.</p></div
    corecore