475 research outputs found

    Physics Reach with a Monochromatic Neutrino Beam from Electron Capture

    Full text link
    Neutrino oscillation experiments from different sources have demonstrated non-vanishing neutrino masses and flavour mixings. The next experiments have to address the determination of the connecting mixing U(e3) and the existence of the CP violating phase. Whereas U(e3) measures the strength of the oscillation probability in appearance experiments, the CP phase acts as a phase-shift in the interference pattern. Here we propose to separate these two parameters by energy dependence, using the novel idea of a monochromatic neutrino beam facility based on the acceleration of ions that decay fast through electron capture. Fine tuning of the boosted neutrino energy allows precision measurements able to open a window for the discovery of CP violation, even for a mixing as small as 1 degree.Comment: 4 pages, 1 figure. Talk given at the International Europhysics Conference on High Energy Physics, HEP-EPS 2005, Lisbon, Portugal, July 21-27, 200

    Perspectives in Neutrino Physics: Monochromatic Neutrino Beams

    Full text link
    In the last few years spectacular results have been achieved with the demonstration of non vanishing neutrino masses and flavour mixing. The ultimate goal is the understanding of the origin of these properties from new physics. In this road, the last unknown mixing [Ue3][U_{e3}] must be determined. If it is proved to be non-zero, the possibility is open for Charge Conjugation-Parity (CP) violation in the lepton sector. This will require precision experiments with a very intense neutrino source. Here a novel method to create a monochromatic neutrino beam, an old dream for neutrino physics, is proposed based on the recent discovery of nuclei that decay fast through electron capture. Such nuclei will generate a monochromatic directional neutrino beam when decaying at high energy in a storage ring with long straight sections. We also show that the capacity of such a facility to discover new physics is impressive, so that fine tuning of the boosted neutrino energy allows precision measurements of the oscillation parameters even for a [Ue3][U_{e3}] mixing as small as 1 degree. We can thus open a window to the discovery of CP violation in neutrino oscillations.Comment: 15 pages, 7 figures. Contribution to the proceedings of GUSTAVOFEST - Symposium in Honour of Gustavo C. Branco: CP Violation and the Flavour Puzzle, Lisbon, Portugal, 19-20 July 200

    Physics Potential of the SPL Super Beam

    Get PDF
    Performances of a neutrino beam generated by the CERN SPL proton driver are computed considering a 440 kton water Cerenkov detector at 130 km from the target. θ13\theta_{13} sensitivity down to 1.21.2^\circ and a δ\delta sensitivity comparable to a Neutrino Factory, for θ133\theta_{13} \geq 3^\circ, are within the reach of such a project.Comment: Invited talk at the Nufact02 Workshop, Imperial College of Science, Technology and Medicine, London, July 200

    Neutrino Induced Charged Current 1π+\pi^+ Production At Intermediate Energies

    Get PDF
    The charged current one pion production induced by νμ\nu_\mu from nucleons and nuclei like 12^{12}C and 16^{16}O nuclei has been studied. The calculations have been done for the incoherent and the coherent processes from nuclear targets assuming the Δ\Delta dominance model and take into account the effect of Pauli blocking, Fermi motion of the nucleon and renormalization of Δ\Delta properties in a nuclear medium. The effect of final state interactions of pions has been taken into account. The theoretical uncertainty in the total cross sections due to various parameterizations of the weak transition form factors used in literature has been studied. The numerical results for the total cross sections are compared with the recent preliminary results from the MiniBooNE collaboration on 12^{12}C and could be useful in analyzing future data from the K2K collaboration.Comment: 10 pages, 6 figures, 1 tabl

    Physics Potential of Very Intense Conventional Neutrino Beams

    Get PDF
    The physics potential of high intensity conventional beams is explored. We consider a low energy super beam which could be produced by a proposed new accelerator at CERN, the Super Proton Linac. Water Cherenkov and liquid oil scintillator detectors are studied as possible candidates for a neutrino oscillation experiment which could improve our current knowledge of the atmospheric parameters and measure or severely constrain the parameter connecting the atmospheric and solar realms. It is also shown that a very large water detector could eventually observe leptonic CP violation. The reach of such an experiment to the neutrino mixing parameters would lie in-between the next generation of neutrino experiments (MINOS, OPERA, etc) and a future neutrino factory.Comment: Talk given at the Venice Conference on Neutrino Telescopes, Venice, March, 200

    Neutrino Factories and the "Magic" Baseline

    Get PDF
    We show that for a neutrino factory baseline of L7300km7600kmL \sim 7300 km - 7 600 km a ``clean'' measurement of sin22θ13\sin^2 2 \theta_{13} becomes possible, which is almost unaffected by parameter degeneracies. We call this baseline "magic" baseline, because its length only depends on the matter density profile. For a complete analysis, we demonstrate that the combination of the magic baseline with a baseline of 3000 km is the ideal solution to perform equally well for the sin22θ13\sin^2 2 \theta_{13}, sign of Δm312\Delta m_{31}^2, and CP violation sensitivities. Especially, this combination can very successfully resolve parameter degeneracies even below sin22θ13<104\sin^2 2 \theta_{13} < 10^{-4}.Comment: Minor changes, final version to appear in PRD, 4 pages, 3 figures, RevTe

    Untangling CP Violation and the Mass Hierarchy in Long Baseline Experiments

    Get PDF
    In the overlap region, for the normal and inverted hierarchies, of the neutrino-antineutrino bi-probability space for νμνe\nu_\mu \to \nu_e appearance, we derive a simple identity between the solutions in the (sin22θ13\sin^2 2\theta_{13}, sinδ\sin \delta) plane for the different hierarchies. The parameter sin22θ13\sin^2 2\theta_{13} sets the scale of the νμνe\nu_\mu \to \nu_e appearance probabilities at the atmospheric δmatm22.4×103\delta m^2_{atm} \approx 2.4 \times 10^{-3} eV2^2 whereas sinδ\sin \delta controls the amount of CP violation in the lepton sector. The identity between the solutions is that the difference in the values of sinδ\sin \delta for the two hierarchies equals twice the value of sin22θ13\sqrt{\sin^2 2\theta_{13}} divided by the {\it critical} value of sin22θ13\sqrt{\sin^2 2\theta_{13}}. We apply this identity to the two proposed long baseline experiments, T2K and NOν\nuA, and we show how it can be used to provide a simple understanding of when and why fake solutions are excluded when two or more experiments are combined. The identity demonstrates the true complimentarity of T2K and NOν\nuA.Comment: 15 pages, Latex, 4 postscript figures. Submitted to New Journal of Physics, ``Focus on Neutrino Physics'' issu

    Unveiling Neutrino Mixing and Leptonic CP Violation

    Get PDF
    We review the present understanding of neutrino masses and mixings, discussing what are the unknowns in the three family oscillation scenario. Despite the anticipated success coming from the planned long baseline neutrino experiments in unraveling the leptonic mixing sector, there are two important unknowns which may remain obscure: the mixing angle θ13\theta_{13} and the CP-phase δ\delta. The measurement of these two parameters has led us to consider the combination of superbeams and neutrino factories as the key to unveil the neutrino oscillation picture.Comment: Invited brief review, 18 pages, 6 figure

    The Physics Potential of Future Long Baseline Neutrino Oscillation Experiments

    Get PDF
    We discuss in detail different future long baseline neutrino oscillation setups and we show the remarkable potential for very precise measurements of mass splittings and mixing angles. Furthermore it will be possible to make precise tests of coherent forward scattering and MSW effects, which allow to determine the sign of Δm2\Delta m^2. Finally strong limits or measurements of leptonic CP violation will be possible, which is very interesting since it is most likely connected to the baryon asymmetry of the universe.Comment: 32 pages, 15 figures, to appear in ``Neutrino Mass'', Springer Tracts in Modern Physics, ed. by G. Altarelli and K. Winter, references adde
    corecore